離散確率分布
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2019/04/11 17:14 UTC 版)
ナビゲーションに移動 検索に移動
離散確率分布(りさんかくりつぶんぷ、英: discrete probability distribution)や離散型確率分布(りさんがたかくりつぶんぷ)は、確率論や統計学において、0 でない確率をとる確率変数値が高々可算個である確率分布のことである。
離散確率分布は確率質量関数に対応する。
定義
確率論において確率分布が離散であるとは、0 でない確率をとる確率変数値が高々可算個であること、つまり
であることである(ℵ0 は可算濃度)。
確率変数が離散型の場合はこれを満たす。
離散確率分布は確率質量関数で表される。
位相幾何学的には、 で、確率が 0 でない確率変数値は全ての点は孤立点であり、それら全てからなる集合は離散集合である。しかし、この可算集合が実数直線上で稠密であるような離散確率変数も存在する。
統計学的モデリングでよく知られた離散確率分布としては、ポアソン分布、ベルヌーイ分布、二項分布、幾何分布、負の二項分布などがある。さらに離散一様分布は、コンピュータプログラムで無作為な選択を行う際によく使われる。
代替の説明
上記と等価的に、離散型確率変数をその累積分布関数がジャンプ不連続によってのみ増加するような確率変数と定義することもできる。すなわち、そのCDFは不連続な点でのみ増加し、不連続点と不連続点の間は一定である。このジャンプ不連続が起きる点はまさに、その確率変数がとりうる値に対応している。ジャンプ不連続点の数は有限または可算無限である。そのようなジャンプの位置は位相幾何学的に離散とは限らない。例えば、CDFが全ての有理数の位置でジャンプすることも考えられる。
以上から、離散確率分布はディラックのデルタ関数を使って確率密度関数を一般化したものとして表現することが多く、それによって連続分布と離散分布を統一的に扱うことができる。これは、連続部分と離散部分がある確率分布を扱う際に特に便利である。
確率変数の指示関数による表現
確率が 0 でない確率変数値を u0, u1, … とし、確率変数値に対応する事象を次のように表現する:
{Ωi}i は Ω の分割であるから、確率変数 X は次の式で表せる:
ここで であり、1A は A の指示関数である。これを離散型確率変数の別の定義として使うこともできる。
関連項目
|
|
離散確率分布
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/05/01 18:42 UTC 版)
詳細は「離散確率分布」を参照 サイコロを投げた時に出る目の数字など、確率変数が離散的な値をとる場合の確率分布は離散型確率分布である。パラメトリックな離散確率分布は母数(パラメータ)と台と確率質量関数 f で特徴付けられる。台というのは確率変数のとる値の集合のことである。 離散一様分布 二項分布母数:成功確率 p と試行回数 n 台:{0, 1, …, n} 確率質量関数:f(k) = nCk pk(1 − p)1−k これは成功確率 p の試行を独立に n 回行ったときの成功回数の分布である。 負の二項分布 多項分布 ポアソン分布 ポアソン二項分布 ベルヌーイ分布 幾何分布 超幾何分布 ジップ分布 ゼータ分布
※この「離散確率分布」の解説は、「確率分布」の解説の一部です。
「離散確率分布」を含む「確率分布」の記事については、「確率分布」の概要を参照ください。
離散確率分布と同じ種類の言葉
- 離散確率分布のページへのリンク