確率変数の収束とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 確率変数の収束の意味・解説 

確率変数の収束

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/09/04 08:03 UTC 版)

数学確率論の分野において、確率変数の収束(かくりつへんすうのしゅうそく、: convergence of random variables)に関しては、いくつかの異なる概念がある。確率変数のある極限への収束は、確率論や、その応用としての統計学確率過程の研究における重要な概念の一つである。より一般的な数学において同様の概念は確率収束 (stochastic convergence) として知られ、その概念は、本質的にランダムあるいは予測不可能な事象の列は、その列から十分離れているアイテムを研究する場合において、しばしば、本質的に不変な挙動へと落ち着くことが予想されることがある、という考えを定式化するものである。異なる収束の概念とは、そのような挙動の特徴づけに関連するものである:すぐに分かる二つの挙動とは、その列が最終的に定数となるか、あるいはその列に含まれる値は変動を続けるがある不変な確率分布によってその変動が表現される、というようなものである。

背景

「確率収束」とは、本質的にランダムあるいは予測不可能である事象の列がしばしばあるパターンへと落ち着くことが期待される、という考えを定式化するものである。そのパターンとは、例えば、

  • ある固定値や、ある確率事象から発生するそれ自身への、古典的な意味での収束
  • 純粋な決定論的な関数から生じる結果への相似性の増加
  • ある特定の結果への嗜好の増加
  • ある特定の結果から離れていることに対する反発の増加

などが挙げられる。それより明白ではないが、より理論的なパターンとしては

  • 次の結果を表現する確率分布が、ある分布へとより似るようになること
  • ある特定の値から離れた結果の期待値を計算することによって形成される列が 0 へと収束すること
  • 次の事象を表現する確率変数分散がより少なくなっていくこと

などが挙げられる。これらの起こりうる異なるタイプのパターンは、研究されている異なるタイプの確率収束において反映される。

上述の議論は一つの列の一つの極限値への収束と関連しているが、二つの列が互いへと収束する概念も重要である。しかし、それは、それら2つの列の差や比によって定義される列を研究することによって容易に扱うことができる。

例えば、等しい有限の平均と分散を持つような n 個の無相関英語版確率変数 Yi, i = 1, …, n の平均が

このタイプの収束により、ある与えられた確率分布によってより良くモデル化されるようなランダム実験の列における結果を期待することができる。

分布収束は、この記事内で述べられる全ての他のタイプの収束も意味するという点において、最も弱い収束である。しかしながら、実際の現場において、分布収束は非常によく利用される; 最もよく現れるのは、中心極限定理の応用においてである。

定義

確率変数の列 X1, X2, … が、ある確率変数 X へと分布収束する、あるいは弱収束あるいは法則収束 (converge in law) するとは、




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

カテゴリ一覧

すべての辞書の索引



Weblioのサービス

「確率変数の収束」の関連用語










10
18% |||||

確率変数の収束のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



確率変数の収束のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの確率変数の収束 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS