非整数ブラウン運動
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/05/05 07:27 UTC 版)
非整数ブラウン運動(ひせいすうブラウンうんどう、英: fractional Brownian motion, fBm)は、自己相似性と長期依存(long range dependence)を特徴とするガウス過程。1940年にコルモゴロフによりコルモゴロフ理論(K41)のなかで自己相似過程が導入され、1968年にマンデルブロとVanNessによりガウス過程のケースに関してFractional Brownian Motionの呼称が与えられた。ハースト(Harold Edwin Hurst)により初めてナイル川流域の貯水量に関するモデルに応用されるなど、経済時系列や通信トラフィック量のモデル化にも使用されている。 [1] [2] [3]
- ^ Stochastic Calculus for Fractional Brownian Motion, T.E. Duncan, Y. Hu, B Pasik-Duncan, SIAM J. Control Optim. Volume 38, Issue 2, pp. 582-612 (2000)
- ^ a b c Theory and applications of long-range dependence, Paul Doukhan, Georges Oppenheim, Murad S. Taqqu, 2003
- ^ Fractional Brownian Motions, Fractional Noises and Applications, Benoit B. Mandelbrot and John W. Van Ness, SIAM Review, Vol. 10, No. 4 (Oct., 1968), pp. 422-437, Society for Industrial and Applied Mathematics
- ^ ``Long Range Dependence,In Foundations and Trends in Stochastic Systems, Gennady Samorodnitsky, Vol. 1, No. 3 (2006) 163–257.
- ^ Multifractal based network traffic modeling, Murali Krishna. P, Vikram M. Gadre, Uday B. Desai, Kluwer Academic Publisher, 2003
- ^ Arbitrage with fractional Brownian motion, L.C.G. Rogers, Mathematical Finance, Vol. 7, No.1(January 1997), 95-105
- ^ Option Prices under the Fractional Black-Scholes Model, from The Wolfram Demonstrations, Contributed by: Andrzej Kozlowski
- ^ Fractional Brownian motion and applications, Dr Elisa Alos, 25 May 2009, (slides 1 - 21)
- ^ Takayasu, Hideki (1990). Fractals in the physical sciences. Manchester University Press. 160-161. ISBN 0-7190-2485-4
- 1 非整数ブラウン運動とは
- 2 非整数ブラウン運動の概要
- 3 関連項目
- 非整数ブラウン運動のページへのリンク