反復関数系
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/09/16 09:47 UTC 版)

反復関数系(はんぷくかんすうけい、英: Iterated function system、IFS)はフラクタルの一種であり、一般に2次元のフラクタルの描画や計算に用いられる。IFSフラクタルは自身のいくつかのコピーの和集合から成り、各コピーは関数によって変形されている(そのため「関数系」と呼ばれる)。典型例としてはシェルピンスキーのギャスケットがある。その関数は一般に収縮写像であり、点の集合がより近くなり、形がより小さくなる。従ってIFSフラクタルは、自身の縮小コピーを(場合によっては重ね合わせて)まとめたものであり、各部を詳細に見れば、その部分もそれ自身の縮小コピーから構成されていて、これが永遠に続く。このため、フラクタルとしての自己相似性が生じる。
定義
形式的には、次のように表される。
-
IFSを使ったフラクタルのシダ 反復関数系を用いたシダ状の画像計算の例を以下に示す。
最初に描画する点は原点 (x0 = 0, y0 = 0) であり、そこから次の点の座標を計算するため、次の4つの座標変換のうちの1つを無作為に選んで反復的に適用する。
- xn + 1 = 0
- yn + 1 = 0.16 yn
この座標変換は1%の確率で選択され、右図で緑色で示されている線分上の点の描画に相当する。
- xn + 1 = 0.2 xn − 0.26 yn
- yn + 1 = 0.23 xn + 0.22 yn + 1.6
この座標変換は7%の確率で選択され、右図の黒の四角形内の任意の点から赤の四角形内の図形への写像となる。
- xn + 1 = −0.15 xn + 0.28 yn
- yn + 1 = 0.26 xn + 0.24 yn + 0.44
この座標変換は7%の確率で選択され、右図の黒の四角形内の任意の点から濃い青の四角形内の図形への写像となる。
- xn + 1 = 0.85 xn + 0.04 yn
- yn + 1 = −0.04 xn + 0.85 yn + 1.6
この座標変換は85%の確率で選択され、右図の黒の四角形内の任意の点から青の四角形内の図形への写像となる。
最初の座標変換が茎の描画となる。2番目の座標変換は左下の葉、3番目は右下の葉の描画に相当する。4番目の座標変換は3番目までで描画される部分を縮小して若干傾けてコピーしたものであり、反復的な適用によってシダ全体が描画される。IFSの再帰的性質により、全体がそれぞれの葉を拡大したコピーになっている。なお、ここでは、座標の範囲を -5 <= x <= 5 と 0 <= y <= 10 としている。
歴史
メンガーのスポンジ, 3次元IFS IFS を現在の形式で考案したのは John Hutchinson である(1981年)。Michael Barnsley の著書 Fractals Everywhere で一般に知られるようになった(1988年)。彼らは、1957年に Georges de Rham が考案した自己相似な曲線である de Rham 曲線の考え方を一般化したのだった。さらにそれ以前にカントール集合の考え方が1884年に登場していた。
関連項目
外部リンク
- 反復関数系のページへのリンク