スケール不変性とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > ウィキペディア小見出し辞書 > スケール不変性の意味・解説 

スケール不変性

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/08/05 20:02 UTC 版)

スケール不変性(スケールふへんせい、: scale invariance)とは、対象のスケール[要曖昧さ回避]を変えてもその特徴が変化しない性質のことである[1]

定義

観測対象 F について、任意のスケール変換 xλx に対し次の性質を満たす定数 μ が存在することである。μ が整数の場合は、μ-次の斉次函数である。

反復関数系ストレンジアトラクター
L-systemEscape-time
fractals確率的フラクタル
人物その他
カテゴリ

スケール不変性

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/03/09 00:51 UTC 版)

冪乗則」の記事における「スケール不変性」の解説

冪乗則を非常に興味深いものとする主な性質は、スケール不変性にある。 f ( x ) = a x k {\displaystyle f(x)=ax^{k}} という関係、あるいはいかなる同次多項式であっても定数因子によって独立変数 x {\displaystyle x} のスケール変化させることは、関数それ自体スケーリング比例帰結するだけだ。 f ( c x ) = a ( c x ) k = c k f ( x )f ( x ) {\displaystyle f(cx)=a(cx)^{k}=c^{k}f(x)\propto f(x)} この式は、定数によるスケーリングとは、単に元の冪乗則関係に定数c k {\displaystyle c^{k}} を乗じることであることを示す。このように特定のスケーリング指数を持つすべての冪乗則は、定数倍と同等となる。なぜならばひとつひとつが他の要因スケールされた版であるからだ。このふるまいは、 f ( x ) {\displaystyle f(x)} と x {\displaystyle x} の両対数をとったときに、線型関係を産むことになる。こうした対数-対数プロットにおける直線関係は、よく冪乗則signature呼ばれる。しかし、実際のデータにおいて、こうした直線関係は必要条件であっても冪乗則関係にデータが従っているとする十分条件ではないことに注意すべきだ事実こうしたsignatureを示すふるまい模倣するデータ有限な量を生成する方法数多く存在する本当冪乗則ではない、単なる模倣データでは漸近的な限界がある。こうして、冪乗則モデル正確にフィッティングし、正当性立証することは、統計学的な研究活発な領域となる。

※この「スケール不変性」の解説は、「冪乗則」の解説の一部です。
「スケール不変性」を含む「冪乗則」の記事については、「冪乗則」の概要を参照ください。

ウィキペディア小見出し辞書の「スケール不変性」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

カテゴリ一覧

すべての辞書の索引



Weblioのサービス

「スケール不変性」の関連用語











スケール不変性のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



スケール不変性のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのスケール不変性 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaの冪乗則 (改訂履歴)、ワイエルシュトラス関数 (改訂履歴)、スカラー場の理論 (改訂履歴)、ベータ関数 (物理学) (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。

©2024 GRAS Group, Inc.RSS