離散猫写像
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/03/24 02:30 UTC 版)
元の画像がカオス的になり、また元に戻る様子。150x150 ピクセル。数字は写像の反復の回数を表す。300回の反復を経て元の画像に戻る。 チェリーのペアの画像に対する写像の反復。74x74 ピクセル。114回の反復を経て元の画像に戻る。その中間地点で上下逆の画像が現れる。 上述の写像と同様に、離散的な猫写像を定義することが出来る。そのような写像の特徴の一つとして、画像は一見ランダムに変換されるように見えるが、多くのステップを経て元の状態に戻る、というものが挙げられる。右図の画像に見られるように、元の猫の画像はせん断され、変換の第一の反復において回転される。その後何回かの反復で現れる画像はランダムあるいは無秩序なもののように見え、さらに何回かの反復で秩序のある猫の幽霊のような画像、すなわち繰り返された構造における小さい複数のコピーや、上下逆のものなどが現れ、最終的に元の画像に戻る。 このような離散猫写像は、円周 N の円環上での状態 qt (0 ≤ qt < N) から状態 qt+1 へのホップする玉の離散ダイナミクスとして、次の二階方程式により従うものに対応する相空間フローとして表現される: q t + 1 − 3 q t + q t − 1 = 0 mod N . {\displaystyle q_{t+1}-3q_{t}+q_{t-1}=0\mod N.} モーメント変数 pt = qt - qt-1 を定義すると、上述の二階方程式によるダイナミクスは、正方形 0 ≤ q, p < N(離散力学系の相空間)からそれ自身への写像として次のように書き換えられる: q t + 1 = 2 q t + p t mod N {\displaystyle q_{t+1}=2q_{t}+p_{t}\mod N} p t + 1 = q t + p t mod N . {\displaystyle p_{t+1}=q_{t}+p_{t}\mod N.} このアーノルドの猫写像は、カオス系に典型的な混合挙動を示す。しかし、この変換の行列式は 1 に等しいので、写像は面積保存かつ可逆であり、その逆変換は次のように得られる: q t − 1 = q t − p t mod N {\displaystyle q_{t-1}=q_{t}-p_{t}\mod N} p t − 1 = − q t + 2 p t mod N . {\displaystyle p_{t-1}=-q_{t}+2p_{t}\mod N.} 実変数 q と p に対し、N = 1 と定めることはよく行われる。そのような場合、周期境界を持つ単位正方形からそれ自身への写像が結果として得られる。 N が整数値である場合、位置変数およびモーメント変数も整数に制限され、猫写像は点のトーラス状の正方格子からそれ自身への写像となる。そのような整数猫写像は、デジタル画像を活用するポアンカレ再帰を伴う混合挙動を示すために幅広く用いられている。画像を元に戻すために必要となる反復の回数は 3N を超えないことが示されている。 ある画像に対して、各反復の間の関係は次のように表現できる: n = 0 : T 0 ( x , y ) = Input Image ( x , y ) n = 1 : T 1 ( x , y ) = T 0 ( mod ( 2 x + y , N ) , mod ( x + y , N ) ) ⋮ n = k : T k ( x , y ) = T k − 1 ( mod ( 2 x + y , N ) , mod ( x + y , N ) ) ⋮ n = m : Output Image ( x , y ) = T m ( x , y ) {\displaystyle {\begin{array}{rrcl}n=0:\quad &T^{0}(x,y)&=&{\mbox{Input Image}}(x,y)\\n=1:\quad &T^{1}(x,y)&=&T^{0}\left({\bmod {(}}2x+y,N),{\bmod {(}}x+y,N)\right)\\&&\vdots \\n=k:\quad &T^{k}(x,y)&=&T^{k-1}\left({\bmod {(}}2x+y,N),{\bmod {(}}x+y,N)\right)\\&&\vdots \\n=m:\quad &{\mbox{Output Image}}(x,y)&=&T^{m}(x,y)\end{array}}}
※この「離散猫写像」の解説は、「アーノルドの猫写像」の解説の一部です。
「離散猫写像」を含む「アーノルドの猫写像」の記事については、「アーノルドの猫写像」の概要を参照ください。
- 離散猫写像のページへのリンク