核燃料サイクルとは? わかりやすく解説

Weblio 辞書 > 同じ種類の言葉 > 言葉 > 場所 > 過程 > 核燃料サイクルの意味・解説 

かくねんりょう‐サイクル〔カクネンレウ‐〕【核燃料サイクル】


核燃料サイクル

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/06/29 06:21 UTC 版)

核燃料サイクルの概要

核燃料サイクル(かくねんりょうサイクル、: nuclear fuel cycle[1]とは、原子力発電を維持するための核燃料の流れ(サイクル)を言う[2][3]

現代においては、その一連の流れ及びそれらから出てくる各種放射性廃棄物が処理・処分されるまでの全ての過程を統合した上でのウラン資源等を有効に利用するための体系を指す[4]

概要

F1 ウラン鉱石
F2 ウラン精鉱(イエローケーキ)
F3 UF6六フッ化ウラン
F4 燃料ペレット
F5 検査中の燃料棒
B1 冷却中の使用済み燃料
B2 地層処分の概念
B3 核廃棄物隔離試験施設 WIPP施設概要 New Mexico, USA
B4 地層処分 核廃棄物隔離試験施設 (Waste Isolation Pilot Plant)

核燃料サイクルは、多くの場合、ウラン235を巡る後者の意味で用いられ、鉱山からの鉱石天然ウラン)の採鉱精錬同位体分離濃縮燃料集合体への加工、原子力発電所での発電、原子炉から出た使用済み核燃料を、再処理して、核燃料として再使用できるようにすること、および放射性廃棄物の処理処分を含む、一連の流れのことである。鉱山からの鉱石の採鉱から核燃料への加工までをフロントエンド、再処理以降をバックエンドと分けることもある。

フロントエンド・サイクル

バックエンド・サイクル

軽水炉から取り出された使用済み核燃料には、「燃えないウラン」である非核分裂性のウラン238、ウランから生成されたプルトニウム、僅かながら「燃えるウラン」である核分裂性核種のウラン235、各種の核分裂生成物が含まれる。このプルトニウムやウラン235を抽出し核燃料として再利用すれば、単に廃棄処分することに比べ多くのエネルギーを産出できる。また、使用済み核燃料のウランやプルトニウムを取り出すことになるため、放射性物質が減少し、廃棄物の量が減ることにもなる。更にウランは比較的政情が安定した国に多いため、ウランを全面的に輸入に頼る国でもエネルギーセキュリティ上のリスクは少ないが、核燃料サイクルで核燃料の有効活用と長期使用が出来ればよりリスクを低減できることになる。

一方、核関連施設や運搬が増える為、特にプルトニウムを扱うために高いセキュリティが要求されるとの指摘もある。

バックエンドサイクルは再処理事業、濃縮事業、廃棄物管理事業、埋設事業に分けられる。

日本の核燃料サイクル

核燃料サイクル政策の検討

2005年に「原子力の研究、開発及び利用に関する長期計画」の見直しが行われ、以下の四つのシナリオが検討された[5]

  • シナリオ1 全量再処理(現行路線)
使用済み核燃料は六ヶ所再処理施設で再処理を行う。処理能力を超えた分は中間貯蔵を経た上で同じように再処理を行う。
  • シナリオ2 部分再処理
使用済み核燃料は六ヶ所再処理施設で再処理を行う。処理能力を超えた分は中間貯蔵を経た上でそのまま埋設して直接処分する。
  • シナリオ3 全量直接処分(ワンススルー)
使用済み核燃料はすべて中間貯蔵を経た上でそのまま埋設して直接処分する。アメリカ、ドイツ等で採用。
  • シナリオ4 当面貯蔵
使用済み核燃料はすべて当面の間中間貯蔵する。

なお、内閣府から2005年10月14日に発表された「原子力の研究、開発及び利用の推進(原子力の研究、開発及び利用に関する長期計画)」の事後評価には、どのシナリオが最適であるかの結論が述べられておらず、わずかに原子力の推進にはプルトニウム、ウラン等の有効利用が適切であると触れられているのみである。

なお、シナリオ3は再処理を行わないという選択であり、これは核燃料リサイクル政策の中止を意味する。

現在の核燃料サイクル政策

上記シナリオ1から4までについて、10項目の視点から評価を行った結果、原子力委員会では、原子力政策大綱(2005年(平成17年)10月11日原子力委員会決定)において、「使用済燃料を再処理し、回収されるプルトニウム、ウラン等を有効利用することを基本方針とする。」ことを決定しており、原子力政策大綱[6]は、2005年(平成17年)10月14日、原子力政策に関する基本方針として閣議決定されている。現行路線(上記シナリオ1)に基づき、2011年までの45年間に核燃料サイクルに投じられた金額は少なくとも10兆円に上っており、その原資は税金と電気料金からなる[7]。しかし六ヶ所村の再処理工場の稼動は延期が重ねられており、高速増殖炉もんじゅは複数回の事故により1994年の稼動開始以来わずか数か月しか運転できないまま、2016年12月に廃炉が決定された。

但し下記の六ヶ所村の核燃料サイクル基地が稼働しても年間再処理能力は800トンであり国内の原子力発電所から発生する使用済み燃料は年間1000トンを超えており、「全量再処理」路線を掲げる長計に沿えば、第二再処理工場を建設する必要がある。また電気事業連合会は2003年12月の時点でバックエンド費用が総額18兆8千億円かかると試算している[8]

関西テレビが2023年8月10日に放映したnewsランナーで、明治大学大学院の勝田忠広教授は「再処理工場がトラブル続きで稼働していない」ことや「核燃料加工施設も建設中で進展していない」ことを指摘し、また「MOX燃料の需要がなくなっているという意味で」核燃料サイクルは「破綻していると言っていいと思います」と指摘した[9]

放射性廃棄物の処理処分

高レベル放射性廃棄物[10]TRU廃棄物[11]、低レベル放射性廃棄物[12]はそれぞれの物性に応じて段階的処分が適用される[13]

ウラン濃縮施設やウラン燃料成型加工施設から出るウラン廃棄物は、2009年3月末時点で200ℓドラム缶に換算して約10万本が保管中である。また核燃料サイクルからは外れるが、原子炉の廃炉解体に伴う廃棄物にも放射性廃棄物が含まれる[14]

日本における核燃料サイクル施設

日本ではウラン鉱の採鉱・精錬等は行われていない。フロントエンドではウラン濃縮事業と燃料加工事業、バックエンドでは使用済み燃料再処理および放射性廃棄物の保管と低レベル放射性廃棄物の埋設処理が行われている。濃縮、燃料加工、使用済み燃料再処理に関しては国内の能力で需要を満たせておらず、大半を海外に依存している。高レベル放射性廃棄物の地層処分については設置場所を公募中である。以下は2013年3月末時点[15]

濃縮施設

国内での処理能力は1890トンU/年で国内需要の約三分の一である。

転換・加工施設

成形加工能力1,823トン-U/年、転換加工能力475トン-U/年
処理能力
グローバル・ニュークリア・フュエル・ジャパン ? 神奈川県横須賀市 1970年より稼働中 成形加工 750トン-U/年
三菱原子燃料 茨城県東海村 1972年より稼働中 440トン-U/年
転換加工 475トン-U/年
原子燃料工業 熊取事業所 大阪府熊取町 成形加工 383トン-U/年
東海事業所 茨城県東海村 1980年より稼働中 250トン-U/年

使用済み核燃料中間貯蔵施設

日本国内で発生した使用済み核燃料は、各原子力発電所内等で保管されている。原子力発電所外の中間貯蔵施設として、リサイクル燃料貯蔵株式会社の中間貯蔵施設(青森県むつ市)が2013年8月29日に完成した[16]。貯蔵能力は約3000トン。

再処理施設

2002年末までに5600トンUの処理がイギリス・フランスに委託された。

  • 日本原子力研究開発機構・東海研究開発センター核燃料サイクル工学研究所東海再処理施設(茨城県東海村) 稼働1981~2007年 累計処理量1,140トン-U。
  • 日本原燃・再処理事業所六ヶ所再処理工場(青森県六ヶ所村) 2011年10月アクティブ試験中、2012年10月しゅん工予定であるが、使用済み核燃料の受入は2000年より始まっており当施設では3,362トンを保管している。

MOX燃料加工施設

再処理施設で回収されるウラン・プルトニウム混合酸化物は、プルサーマル発電等に使用されるMOX燃料に加工される。加工工場が青森県六ヶ所村に施設建設中。

廃棄物管理施設

  • 日本原燃・六ヶ所高レベル放射性廃棄物貯蔵管理センター(青森県六ヶ所村) 高レベル放射性廃棄物のガラス固化体の保管 1995年より稼働中、保管量1,442本(保管容量2,880本)
  • 日本原子力研究開発機構・廃棄物管理施設(茨城県大洗町) 高レベル以外の放射性廃棄物の保管 1996年より稼働中、保管量29,429本(200リットルドラム缶換算、保管容量42,795本)。

廃棄物埋設施設

  • 六ヶ所低レベル放射性廃棄物埋設センター(青森県六ヶ所村) 低レベル放射性廃棄物の埋設 1992年より稼働中。累計搬入量251,979(200リットルドラム缶換算、保管容量412,160本)
  • 日本原子力研究開発機構・廃棄物埋設施設(茨城県東海村) 極低レベル放射性廃棄物の埋設 1995年より稼働中。1995年より稼働、1,670トンを埋設し1997年10月には埋設地の保全段階へ移行。
  • 高レベル放射性廃棄物の地層処分施設は場所を公募・検討中。2033~2037年頃に施設の建設を開始する予定である。

この他、放射性物質等を陸揚げするむつ小川原港へは、専用道路が通っている。

核燃料サイクルの系列

ウラン核燃料サイクル

ウラン235(天然・核分裂性・核燃料)+ 中性子 → 核分裂生成物(使用済み燃料)

外部リンク


ウィキペディアウィキペディア

核燃料サイクル

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2016/01/07 16:58 UTC 版)

改良型重水炉」の記事における「核燃料サイクル」の解説

改良型重水炉原理毒を容易に除去できるため、標準構成でも閉じた核燃料サイクルが実現できるこのため改良型重水炉には多様な核燃料サイクルを実現する代替燃料選択肢があり、閉サイクルもワンススルーも実現できる改良型重水炉トリウム燃料を高い燃焼度利用することを第一義にしており、使用済み燃料再処理して回収したトリウムは再び改良型重水炉戻されプルトニウム高速増殖炉利用するために貯蔵されるインド政府構想している3段階核燃料サイクルは以下の通りである。 第1段階 ウラン燃料国内生産し、それを使用する重水炉建設して発電およびプルトニウム生産を行う。これはカナダからCANDU炉技術導入行ったことで達成され発電用原子炉技術プルトニウム再処理技術確立している。 第2段得られプルトニウム使用する高速増殖炉建設して発電およびプルトニウム増殖を行うとともに高速増殖炉国産トリウム用いた燃料ブランケット設置して中性子照射することで新たな燃料物質であるウラン233生産する。現在はこの段階の途中である。 第3段ウラン233使用する増殖炉改良型重水炉または加速器駆動未臨界炉(ADS))を建設し発電ウラン233生産進めトリウム燃料サイクル確立する

※この「核燃料サイクル」の解説は、「改良型重水炉」の解説の一部です。
「核燃料サイクル」を含む「改良型重水炉」の記事については、「改良型重水炉」の概要を参照ください。

ウィキペディア小見出し辞書の「核燃料サイクル」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ



核燃料サイクルと同じ種類の言葉


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

カテゴリ一覧

すべての辞書の索引



Weblioのサービス

「核燃料サイクル」の関連用語

1
エヌ‐エフ‐シー デジタル大辞泉
100% |||||

2
原子燃料サイクル デジタル大辞泉
100% |||||

3
核燃サイクル デジタル大辞泉
100% |||||


5
ジェー‐エヌ‐シー デジタル大辞泉
100% |||||






核燃料サイクルのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



核燃料サイクルのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
デジタル大辞泉デジタル大辞泉
(C)Shogakukan Inc.
株式会社 小学館
福井原子力環境監視センター福井原子力環境監視センター
Copyright (C)2001-2025 FERMC(福井県原子力環境監視センター) All rights reserved.
文部科学省文部科学省
Copyright (C) 2025 文部科学省 All rights reserved.
環境防災Nネットホームページ原子力防災基礎用語集
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの核燃料サイクル (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaの改良型重水炉 (改訂履歴)、核技術 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。

©2025 GRAS Group, Inc.RSS