節足動物 節足動物の概要

節足動物

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/02/12 08:12 UTC 版)

節足動物
生息年代: 537–0 Ma[1]
現生および絶滅した様々な節足動物[注釈 1]
地質時代
カンブリア紀 - 現世
分類
ドメイン : 真核生物 Eukaryota
: 動物界 Animalia
階級なし : 左右相称動物 Bilateria
階級なし : 前口動物 Protostomia
上門 : 脱皮動物上門 Ecdysozoa
階級なし : 汎節足動物 Panarthropoda
: 節足動物門 Arthropoda
学名
Arthropoda
Gravenhorst1843[2]
和名
節足動物
英名
Arthropod
亜門

絶滅群は本文参照

学名 Arthropodaギリシア語ἄρθρονarthron, 関節)と πούςpous, )の合成語であり、本動物門の関節に分かれた付属肢関節肢)にちなんで名づけられた[8]

形態学、解剖学と生理学

節足動物のクチクラ層の構造[注釈 3]

節足動物の形態は多様で、種類により様々な外見を持つ。現生の大きさは1mm未満のダニから数10 cmのロブスターまで幅広く、古生物にまで範囲を広げると2m以上と考えられる巨大な種類も含まれる[9][10][11]。体の表皮キチン質タンパク質等からなるクチクラcuticle)で、外骨格exoskeleton, sclerite)と関節(articulation)を構成する。これは成長につれて更新されていき、古い表皮は脱皮により脱ぎ捨てられる[12]

体節制

節足動物は体節制segmentation)をもつ。すなわち、体は体節somite)という単位の繰り返し構造からなり、各体節は原則として1対の付属肢をもつ(後述[13]。体は原則として上下が背板(tergite, tergum)と腹板(sternite, sternum)に覆われており、更に左右に側板(pleuron)を持つものもある。これらの外骨格も体節単位になっており、体節の間は関節に分かれて可動であることが多い。体の先頭の体節は先節(ocular somite)といい、節足動物のはここに由来する[14]。体の末端に尾節telson)という非体節性のに相当する構造をもつ場合もある[13]

体節構造が見当たらない寄生カイアシ類

ただし、節足動物は異規体節制heteronomous metamerism[15])がある程度発達し、複数の体節が組み合わされ、合体節(tagma)という外観上あるいは機能上の単位を構成する(節融合、tagmosis, tagmatization)例が多く見られる[16][13]。例えば、体を「頭部 (head, cephalon)・部 (trunk)」、「頭胸部 (cephalothorax)・腹部 (abdomen)」、「前体 (prosoma)・後体 (opisthosoma)」などの2部、または「頭部胸部 (thorax)・腹部」、「頭部・胸部・尾部 (pygidium)」、「前体・中体 (mesosoma)・終体 (metasoma)」などの3部に分けて呼ぶ場合があり、これは節足動物の各分類群ごとの特徴として用いられる[13]。特に前方の合体節(頭部融合節 head tagma, 頭部・前体など)は往々にして体節の癒合が進み、外見上では元の体節構造が見当たらず、すべて単一の外骨格に覆われている[13]。一方、体節の融合や退化が極端に進み、外見上の体節構造が全く見当たらない例もある[13]

付属肢

節足動物の各体節からは、原則として1対の関節肢arthropodized appendage)という本群に特有の付属肢が出ている。これが「節足動物」という名前およびその学名の由来となっている[8]。関節肢も体節と同様に外骨格で覆われ、関節によって分かれた肢節(podomere)からなる。これは分類群や位置により歩脚遊泳脚触角生殖肢など様々な機能に応じて様々な形に特化している[13]。例えば頭部には感覚用の触角と摂食用の顎、胴部には移動用の歩脚を持つなど、節足動物は、往々にして異なる機能を担った様々な関節肢を兼ね備え、「アーミーナイフのように、別々の機能をもつ複数の道具が同時にセットされる」とも比喩される[17]。また、節足動物は多くが口の直前に上唇labrum)やハイポストーマ(hypostome)などという1枚の蓋状の構造体があり、これも付属肢由来の部分ではないかと考えられる[18][19][20][14]。なお、前述の体節のように、関節肢が不明瞭もしくは完全に退化消失した例もある[13]

様々な昆虫頭部関節肢
A: バッタ、B: ハチ、C: チョウ、D: 、a: 触角、c: 複眼、lb: 上唇、lr: 下唇、md: 大顎、mx: 小顎

節足動物の関節肢は、全長が枝分かれしていない単枝型付属肢(単肢型付属肢、uniramous appendage)、もしくは内側の内肢endopod, endopodite)と外側の外肢exopod, exopodite)に枝分かれした二叉型付属肢(二肢型付属肢、biramous appendage)で現れる。多くの現生節足動物(六脚類多足類・ほとんどの鋏角類)は単枝型付属肢のみをもつが、甲殻類[21]三葉虫メガケイラ類などの古生代絶滅群では二叉型付属肢の方が一般的である[22][23]。それ以外にも、外側に外葉exite, 副肢 epipod, epipodite)、内側に内葉(endite, 内突起)などという非肢節性な分岐をもつものがある[23]

運動

通常の関節肢の機構
関節肢におけるの機構

節足動物の外骨格は分節した関節と、その間にある柔らかい節間膜arthrodial membrane)により可動域を得られている。分節した体節は関節が伸縮から湾曲まで、様々な方向に動かせる場合が多いが、関節肢の関節は往々にして1つか1対の関節丘condyle)により外骨格の支点を固定され、特に1対の場合では蝶番のように1つの平面上で安定に折り曲げる[24][25][26]。そのため節足動物の関節肢、特に基部は往々にして複数の関節に分かれ、様々な動きに対応するようになっている[24][25][27][28]。外骨格の関節の摩擦を抑えるように、それに隣接した外骨格の縁辺部から潤滑物質を分泌することも知られている[29]

また、節足動物の運動機構は往々にして上述の外骨格のみならず、体内の筋肉に付着面を提供する内骨格(endoskeleton)も兼ね備えている。これは主に外骨格の内壁から伸長したもの、もしくは筋肉の付け根から硬化した(内突起、internal tendon, apodeme)である[31]。例えばほとんどの節足動物は、付属肢基部の外在筋に繋がる内腹板(endosternite, 内腹甲[32])を体節内にもつ[31][33][34][30]カニなどの強力な挟む力をもつの中には、可動指内側の関節に繋がった、大量の屈筋とそれに付着する板状の腱が見られる[35][36][37]

また、筋肉以外の機構で関節を動かす例も多く見られる。例えば多くのクモガタ類は脚の途中の関節に伸筋を持たず、体内の血リンパ(後述)の水圧クモなど)、もしくは弾性のある特殊な外骨格(ヒヨケムシなど)で関節を広げて脚を伸ばす[25][38][39][30]

他の内部構造

節足動物の基本の内部構造
赤:心臓、黄:消化管、青:中枢神経

他の多くの左右相称動物と同様、節足動物は体腔を持ち、消化系は体の前後を貫通し、いわゆる肛門という2つ開口を持つ。心臓は体腔の背面に、脳以外の中枢神経系は体腔の腹面に付属する。

消化系と排出器

ダニの枝分かれた消化管(4)とマルピーギ管(5)
エビの基節腺(触角腺)

消化管は往々にして順に咽頭(pharynx)・食道(esophagus)・前腸(foregut, 前胃 proventriculus)・中腸(midgut)・後腸(hindgut)などと分かれるように分化が進み、発達した分岐(diverticula, 消化腺 digestive gland, 中腸腺 midgut gland)を中腸にもつ場合もある[40]。消化管の前後、いわゆる口と肛門のすぐ内側の内壁はクチクラ性で、成長の際には外部の表皮と同様に脱皮して更新される[41]

基本的な排出器として対になる腎管(nephridium)がある。これは分類群ごとに特定の付属肢基部で開口することにより、触角腺(antennal gland, 甲殻類の第2触角[42]・小顎腺(maxillary gland, 甲殻類の第2小顎[43]・基節腺(coxal gland, 鋏角類[44]などと呼ばれている。それ以外の排出器としては消化管から枝分かれたマルピーギ管(malpighian tubule)があり、六脚類多足類クモガタ類に見られる[45][46][47]

循環系

節足動物の循環系は基本として開放血管系open circulatory system)であり、細胞外液リンパ液血液という区別はなく、リンパ液血液の役割を兼ねた血リンパhemolymph)が背面の心臓組織の間隙(血体腔)に流れている[48]。心臓の伸縮や体の運動により、血リンパは心臓の動脈から体の静脈呼吸器などの器官を通り、心門を介して再び心臓に戻る。血リンパの中には免疫系血球(hemocyte)がある[49]。心臓は消化管の背面にあり、基本では体長の大部分を占めるほど縦長いが、カニミジンコのように一ヶ所に集中する例もある[50]

神経系

昆虫神経系模式図
P: 前大、D: 中大脳、T: 後大脳、CV: 腹神経索

体節制をもつ他の前口動物に似て、節足動物の中枢神経系の様式ははしご形神経系ladder-like nervous system)である。前背面の(後述)の直後に続く腹面1対の腹神経索(腹髄神経索、ventral nerve cord)は体節ごとに神経節ganglion)となって左右の連絡(横連合 commissure)で繋がり、全体的はしご形となっている。ただし、神経節が集中してはしご形が不明瞭な場合もあり、例えばカブトガニクモガタ類の前体において脳と腹神経索を集約させた synganglion、およびカニや派生的な昆虫において著しく集約した胸部と腹部の神経節がその例である[51]

神経系の前端部には脳があり、食道の前上方にあることから食道上神経節(supraoesophageal ganglion, 大脳神経節[52])とも呼ぶ。現生の節足動物では、これは先頭3つの体節(先節・第1体節・第2体節)がもつ3対の神経節の融合でできた脳(tripartite brain)であり、前大脳(protocerebrum)・中大脳(deutocerebrum)・後大脳(tritocerebrum)という3つの脳神経節(cerebral ganglion)から構成される[53][20][54][14][55]。前大脳には複眼からの視覚情報を処理する視葉(optic lobe)、嗅覚の識別や記憶および感覚神経の統御を司るキノコ体mushroom body)、視覚行動の統御を行う中心複合体(central body)を持つ[54]。脳は前大脳をはじめとして背側にあるため、中央もしくは直後から食道を囲み、食道神経環(circumesophageal nerve ring)を介して腹面の腹神経索に連結する。昆虫甲殻類などの大顎類の場合、食道神経環の直後は大顎小顎/下唇)に対応する神経節で、まとめて食道下神経節(suboesophageal ganglion、顎神経節[52])といい[54]ハエハチチョウなどにおいては脳と融合し頭部神経節を構成する(この場合は食道上神経節のみならず、食道下神経節も脳の一部と扱う)[54]

感覚器

節足動物は様々な感覚器を通じて周りの環境を感知する。体表は常に剛毛(刺毛、感覚毛、seta, 複: setae)をもち、種類により触覚振動水流気流温度嗅覚味覚化学物質など視力以外の感覚を担う。中で振動を感知するのに特化したものは聴毛(trichobothrium, 複: trichobothria)と呼ぶ[56]

鋏角類以外の節足動物の頭部は、往々にして触角antenna, 複: antennae)という関節肢をもち、ほとんどの場合は重要な感覚器である。なお、触角をもたない鋏角類の中でも、ウデムシサソリモドキのように、一部のが触角状の感覚器に特化した例がある[25][57]

他にも昆虫小顎下唇にある顎鬚(palp)が嗅覚や味覚に関わり、一部の昆虫と甲殻類の後端にある尾毛cercus, caudal ramus)も感覚器官として用いられる[58]サソリ櫛状板(pectine)とヒヨケムシラケット器官(malleoi)は各群に特有の感覚器であり[57][59]、一部の昆虫は特定の部分(例えばコオロギキリギリスの前脚脛節[60]バッタの腹部[61]カマキリの後胸部腹面[62])に特化した聴覚器官である鼓膜器官tympanal organ)をもつ[63]

ハエ複眼のクローズアップ(走査型電子顕微鏡写真)
ハチの3つの単眼(中央)と2つの複眼(左右)

節足動物は、中眼median eye)と側眼lateral eye)という先節由来[14]の2種類のを兼ね備え、その中で中眼は単眼ocellus, simple eye)、側眼は複眼compound eye)であることが基本と思われる[64][65][66]。しかしその片方しか持たず、複眼が単眼(側単眼)に変化し、または眼が完全に退化消失した例もある。

複眼は図形認識能力をもち、数多くの個眼ommatidium)というレンズ様の構成単位からモザイク画のような視覚を形成する。単眼は主に明暗を感知するなど補助的な機能を担うが、一部のクモハエトリグモメダマグモなど)のように単眼が優れた視力をもつ例もある[39]

眼をもつ節足動物の中で、六脚類甲殻類は基本的に中眼と側眼を兼ね備える。後者の場合、中眼はノープリウス幼生期のノープリウス眼に当たる[64]多足類は全て中眼をもたず、中でゲジ類のムカデは側眼が複眼のままで、他のムカデとヤスデは複眼由来の側単眼をもつ。鋏角類の中でウミグモは中眼のみ、カブトガニウミサソリは複眼と中眼の両方、現生のクモガタ類は複眼を持たず、中眼と複眼由来の単眼を兼ね備えるか片方のみを持つ[65]。また、古生代三葉虫ラディオドンタ類をはじめとして、化石種のみ知られる絶滅群も多くが発達した複眼を有し[67][68]、中眼をもつことが認められるものもある[69][66]

呼吸

節足動物は様々な生息環境に進出しており、それに応じた多様な呼吸様式がみられる。水中呼吸の水生種ではgill)、空気呼吸の陸生種では気管系tracheal system)や書肺book lung)などをもつものがあり、気管系と書肺は気門spiracle, stigma)を介して空気を出入りする。呼吸器は特に持たず、体表で直接的に皮膚呼吸を行う種類もある。

繁殖と発育

求愛・包接・メイトガード・交尾交接・護卵・育児など、節足動物は分類群により様々な繁殖行動を持つ。原則として有性生殖を行う卵生動物であるが、単為生殖卵胎生を行う例も知られている。例えばアブラムシサソリの雌親は幼生を産み、ミジンコは環境に応じて単為生殖と有性生殖を切り替える[80]

節足動物の幼生は基本的に成体と似たような外見を持つが、かけ離れた姿で生まれ、成長するたびに著しく形態が変化する変態metamorphosis)を行う分類群も少なくない。甲殻類ノープリウス幼生から始まる生活環昆虫完全変態holometabolism, 幼虫を経て成虫になる)、および多足類の増節変態(anamorphosis, 成長するたびに体節が増える[81][82])がその例である。

脱皮前の節足動物のクチクラ断面。新しいクチクラの形成過程を示す。

成長するたびに、外骨格を含めて節足動物のクチクラはそれと共に大きくならず、代わりに既存のクチクラの下で柔軟な新しいクチクラを形成し、古いクチクラを抜き捨ててから新しいクチクラが膨らんで大きくなる。この過程は脱皮ecdysis)といい、昆虫の場合は特定の成長過程を指すのに蛹化(終齢幼虫から蛹になる脱皮)や羽化(成虫になる最終脱皮)とも呼ばれる。ただし新しいクチクラの外骨格は柔らかく、元の硬さになるまで時間も掛かるため、脱皮中や脱皮直後の節足動物は普段より無防備で、外骨格が硬くなるまで主に体内の水圧や空気で体の形を整っている[12]。そのため節足動物の脱皮は、捕食者が少ない時間帯や巣穴などの隠れ場所で行うことが多く、例えばセミは夜中で羽化[83]、一部の昆虫幼虫ヤスデは脱皮前にを作る[84]。また、成分を回収するように古いクチクラを摂食する種類や、脱皮直後の配偶の無防備さを利して繁殖行動をする種類も知られている[39]








節足動物と同じ種類の言葉


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「節足動物」の関連用語

1
100% |||||

2
100% |||||

3
100% |||||

4
100% |||||

5
100% |||||

6
100% |||||

7
100% |||||

8
100% |||||

9
100% |||||

10
100% |||||

節足動物のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



節足動物のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの節足動物 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS