大きなパラダイムシフト
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/04/27 08:56 UTC 版)
生物学のパラダイムを大きく変えたものには細胞の発見、進化の提唱、遺伝子の示唆、DNA の構造決定、セントラルドグマの否定、ゲノムプロジェクトの実現などがある。細胞の発見やゲノムプロジェクトは主に技術の進歩によってもたらされ、進化や遺伝子の発見は個人の深い洞察によるところが大きい。 17世紀に発明された顕微鏡による細胞の発見は、微生物の発見をはじめとして、動物と植物がいずれも同じ構造単位から成っていることを認識させ、動物学と植物学の上位分野として生物学を誕生させることになった。また自然発生説の否定によって、いかなる細胞も既存の細胞から生じることが示され、生命の起源という現在も未解明の大きな問題の提示につながっている。 進化はチャールズ・ダーウィンをはじめとする数人の博物学者によって19世紀に提唱された概念である。それまでは経験的にも宗教的にも、生物種は固定したものとされていたが、現在では、同じ種の中でも形質に多様性があり、生物の形質は変化するものとされ、種の区別が困難なものもあるという指摘がされている。単純な生物から多様化することで現在のような多様な生物が存在すると考えることが可能になり、生命の起源を研究可能なテーマとすることができるようになった。進化論は社会や思想にも大きな影響を与え、近代で最も大きなパラダイムシフトの1つであった。 遺伝自体は古くから経験的に知られていた現象である。しかし、19世紀後半、メンデルは交雑実験から遺伝の法則を発見し、世代を経た後にも分離可能な因子、すなわち遺伝子が存在することを証明した。さらに染色体が発見され、20世紀前半の遺伝学・細胞学による研究から、染色体が遺伝子の担体であることが確証づけられた。この過程において古典的な遺伝学が発展し、その後の分子生物学の誕生にもつながった。 詳細は「染色体説」を参照 1953年、ジェームズ・ワトソン、フランシス・クリックらが、X線回折の結果から、立体模型を用いた推論により遺伝物質 DNA の二重らせん構造を明らかにした。DNA構造の解明は、分子生物学の構造学派にとって最大の成功である。相補的な2本の分子鎖が逆向きにらせん状構造をとっているというモデルは、染色体分配による遺伝のメカニズムを見事に説明しており、その後の分子生物学を爆発的に発展させた。 DNAからRNAへの転写、RNAからタンパク質への翻訳、遺伝暗号などの解明により、セントラルドグマと呼ばれる「DNA→RNA→タンパク質」といった一方向の情報伝達がまるで教義のように思われた時期もあったが、これを裏切るかのように逆転写酵素やリボザイムといった発見も20世紀後半に相次いだ。 ゲノムという概念は、ある生物種における遺伝情報の総和として提唱された。ゲノム genome という語は遺伝子 gene と、総体を表す接尾語 -ome の合成語である。技術発展によりゲノムプロジェクトが可能になり、ゲノム研究は、生物学における還元論と全体論、普遍性と多様性を結びつける役割をもつようになった。生物種間でのゲノムの比較により普遍性と多様性理解への糸口を与え、還元的な研究に因子の有限性を与えることで、個々の研究を全体論の中で語ることを可能にした。他にも様々な総体に対する研究が始まっている。 詳細は「オーミクス」を参照 Vernon L.が1995年に主張したところところによると、([いつ?]の生物学においては)特に重要な題材は、以下に挙げる5つの原則で、それらは「基本公理とも言える」と言う:。 生命の基本単位は細胞である 新しい種と遺伝的特徴は進化によってもたらされる 遺伝子は形質遺伝の基礎である 生物は体内環境を調整し、一定の状態を安定して維持する 生きている生物はエネルギーを消費し変換する
※この「大きなパラダイムシフト」の解説は、「生物学」の解説の一部です。
「大きなパラダイムシフト」を含む「生物学」の記事については、「生物学」の概要を参照ください。
- 大きなパラダイムシフトのページへのリンク