UBHとは? わかりやすく解説

Weblio 辞書 > ビジネス > 米国企業情報 > UBHの意味・解説 

U.S.B. Holding Co., Inc.(NYSE:UBH)

住所: 100 Dutch Hill RoadOrangeburg, NY 10962United States
電話: 1- (845) 365-4600
FAX: 1- (845) 365-4695
ウェブサイト: http://www.unionstate.com
業種: 金融
業界: 地方銀行

» ダウ・ジョーンズ米国企業総合情報データベースはこちら

ウンビヘキシウム

(UBH から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/05/06 09:12 UTC 版)

ウンビペンチウム ウンビヘキシウム ウンビセプチウム
(Ac)

Ubh

不明
126Ubh
外見
一般特性
名称, 記号, 番号 ウンビヘキシウム, Ubh, 126
分類 超アクチノイド元素
, 周期, ブロック ?, 8, g
原子量 [ - ]
電子配置 [Og]5g26f27d18s28p1
1/2
(推定)[1]
電子殻 2, 8, 18, 32, 34, 20, 9, 3(推定)(画像
物理特性
原子特性

ウンビヘキシウム (: Unbihexium) は、原子番号126にあたる未発見の超重元素に付けられた一時的な仮名(元素の系統名)である。この名称と記号はそれぞれ系統的なIUPAC名の記号であり、元素が発見され、確認され、恒久的な名前が決定されるまで使われる。周期表において、ウンビヘキシウムはgブロックの超アクチノイドと予想され、第8周期の8番目の元素であると考えられる。ウンビヘキシウムは、特に超重元素の特性を対象とした初期の予測で核物理学者たちの注目を浴びた。126という数字は、安定の島の中心近くにある陽子の魔法数とされ、特に310Ubhや354Ubhでは中性子も魔法数を持つ可能性があるため、より長い半減期を示す可能性がある[2]

高い安定性を持つ可能性から初期の関心を集め、1971年にウンビヘキシウムの最初の合成が試みられ、その後の数年間で天然物質中での存在を探索する研究が行われた。いくつかの報告があるものの、最近の研究ではこれらの実験は感度不足であった可能性が指摘されており、天然または人工的なウンビヘキシウムは発見されていない。ウンビヘキシウムの安定性に関する予測は、異なるモデルによって大きく異なる結果が示されている。一部の予測では、安定の島はコペルニシウムフレロビウムに近い、より低い原子番号に存在する可能性があるとされている。

ウンビヘキシウムは化学的に活性のある超アクチノイドと考えられており、+1から+8までのさまざまな酸化数を示し、プルトニウムの同族元素であると予測されている。また、5g、6f、7d、および8p軌道のエネルギーレベルが重なることも予想されており、この元素の化学的特性の予測が複雑になっている。

歴史

合成の試み

ウンビヘキシウムの合成を試みた最初で唯一の試みは、1971年にCERN(欧州原子核研究機構)でフランスのRené Bimbotと、John M. Alexanderによって行われたが成功しなかった。彼らは熱核反応を使用して次のような反応を試みた[3][2][4]

日本原子力研究開発機構が使用したこの図では、Z = 149およびN = 256までの原子核の崩壊モードを予測している。Z = 126(右上)では、ベータ安定線が、自発核分裂を起こす不安定な領域(半減期が1ナノ秒未満)を通り、N = 228の閉殻付近に広がる安定の「岬」にまで至る。そこには、二重魔法核種354Ubhを中心とした安定の島が存在するかもしれない[33]
この図は殻模型におけるエネルギーギャップを描いている。エネルギーギャップは、次のエネルギーレベルに到達するためにより多くのエネルギーが必要となる時、特に安定した配置の時に生じる。陽子において、Z = 82でのエネルギーギャップは鉛の安定性のピークに対応する。Z = 114とZ = 120の魔法数は意見が分かれているが、Z = 126でエネルギーギャップが現れるため、ウンビヘキシウムに陽子の閉殻がある可能性が示唆されている[34]

殻模型の拡張により、Z = 82およびN = 126(208Pb、最も重い安定核)の後に続く次の魔法数は、Z = 126およびN = 184であり、310Ubhが二重魔法数を持つ次の候補となる。これらの推測により、1957年以来、ウンビヘキシウムの安定性に関心が寄せられた。ガートルード・シャーフ・ゴールドハーバー (en:Gertrude Scharff Goldhaber) は、ウンビヘキシウムを中心とした周辺領域の安定性がおそらく増す、と予測した最初の物理学者の一人であった[2]。このような長寿命の超重元素からなる「安定の島」という概念は、1960年代にカリフォルニア大学の教授であるグレン・シーボーグによって広められた[35]

周期表のこの領域では、N = 184およびN = 228が中性子の閉殻として提案されている[36]。また、Z = 126を含むさまざまな原子番号が陽子の閉殻として提案されている[注釈 1]。しかし、ウンビヘキシウムの領域における安定化効果の程度は不確定である。なぜなら、陽子殻の閉じ方が変動したり弱まったりし、二重魔法性が失われる可能性があるからである[36]。より最近の研究では、安定の島は代わりにベータ安定性を持つコペルニシウム291Cnおよび293Cn)[28][37]またはフレロビウムZ = 114)を中心に存在していると予測されている。その場合、ウンビヘキシウムは安定の島よりもかなり上に位置し、殻模型に関係なく半減期が短くなる。

初期のモデルでは、310Ubh近辺に長寿命の核異性体が存在し、その半減期は数百万または数十億年のオーダーで自発核分裂に耐性を持つと考えられていた[38]。 しかし、1970 年代にはさらに厳密な計算が行われ、矛盾した結果が得られた。現在では、安定の島は310Ubhの中心には存在していないと考えられており、この核種の安定性は高くない。むしろ、310Ubhは非常に中性子不足であり、マイクロ秒未満のアルファ崩壊と自発核分裂を起こしやすく、陽子ドリップライン (en:Proton drip line) またはそれより上に位置する可能性がある[2][27][33]。2016年の計算によると、288–339Ubhの崩壊特性はこれらの予測を支持しており、313Ubhよりも軽い同位体(310Ubhを含む)はドリップラインを超えており陽子放出で崩壊する可能性がある。313–327Ubhはアルファ崩壊を起こしてフレロビウムとリバモリウムの同位体に至る可能性があり、より重い同位体は自発核分裂によって崩壊する[39]。 この研究およびトンネル効果のモデルによれば、318Ubhより軽い同位体のアルファ崩壊の半減期はマイクロ秒未満であり、実験的に特定することは不可能とされている[39][40][注釈 2]。したがって、合成および検出されるのは318–327Ubhの同位体であり、N ~ 198 付近で半減期が数秒に達するような核分裂に対する安定性が高い領域が存在する可能性があるが、このような安定性が高い領域は全く存在しないとするモデルもある[37]

非常に低い核分裂障壁(en:Fission barrier、超重元素におけるクーロン反発の大幅な増加によるもの)により、10−18秒のオーダーの核分裂半減期を持つ「不安定の海」が、さまざまなモデルで予測されている。半減期が1マイクロ秒以上の安定性の正確な限界は異なるものの、核分裂に対する安定性はN = 184およびN = 228の閉殻に強く依存し、閉殻を超えると安定性は急速に低下する[27][33]。ただし、中間の同位体における核変形によって魔法数のシフトが引き起こされれば、このような効果は軽減されるかもしれない[41]。同様の現象は変形した二重魔法核である270Hsでも観察された[42]。このシフトによって、ベータ安定線上にある342Ubhなどの同位体は、数日間程度の長い半減期が生じる可能性がある[41]。また、もうひとつの安定の島は、中性子がより多い354Ubhを中心として存在するかもしれない。球状の原子核と、ベータ安定線に近いN = 228同位体が安定性をもたらすためである[33]。元々、354Ubhの自発核分裂における半減期は短い39ミリ秒が予測されていたが、この同位体に対する一部のアルファ崩壊の半減期は18年と予測されていた[2]。最近の分析では、閉殻が強い安定化効果を持つことでこの同位体が安定の島の中心に位置し、半減期は数百年のオーダーになることが示唆されている[33]。また、354Ubhが二重魔法数でない可能性もある。Z = 126原子殻の魔法性は比較的弱いか、一部の計算では完全に存在しないと予測されている。Z = 126による安定化効果があるともないとも言われていることから、ウンビヘキシウム同位体どうしの相対的な安定性は、中性子閉殻のみによってもたらされると考えられる[9][36]

化学的な特性

ウンビヘキシウムは超アクチノイドの6番目の元素であると予測されている。両元素とも、貴ガスの電子配置上に8つの価電子を持つため、プルトニウムと類似性があると予想されている。超アクチノイド系列では、7d、8p、特に5gおよび6f軌道のエネルギーレベルが重なり、構造原理相対論効果によって崩れることが予想されている。そのため、これらの元素の化学的および原子的特性の予測は非常に困難である[43]。 ウンビヘキシウムの基底状態の電子配置は、[Og] 5g2 6f2 7d1 8s2 8p1[1]または[Og] 5g1 6f4 8s2 8p1と予測されており[44]、これは構造原理に基づく[Og] 5g6 8s2とは対照的である。

他の初期の超アクチノイドと同様に、ウンビヘキシウムも化学反応で最大8個の価電子を放出し、+8までの様々な酸化数をとると予想されている[45] +4の酸化数が最も一般的であり、+2と+6も存在すると予想されている[1][20]。 ウンビヘキシウムは、四酸化物のUbhO4および、六ハロゲン化物のUbhF6とUbhCl6を形成すると考えられ、後者は比較的強い結合解離エネルギー(2.68 eV)を持っていると予測される[46]。 計算によると、(異核)二原子分子のUbhF分子では、ウンビヘキシウムの5g軌道とフッ素の2p軌道との間に結合が形成されるため、ウンビヘキシウムは5g電子が活発に結合する元素であると言える[18][19]。また、Ubh6+イオン(特にUbhF6中)とUbh7+イオンの電子配置は、それぞれ[Og] 5g2および[Og] 5g1であると予測されている。これはUbt4+およびUbq5+が、アクチノイドの同族元素として類似性を持つ[Og] 6f1の電子配置であるのとは対照的である[45]。基底状態でg軌道に電子を持つ既知の元素は存在しないため、5g軌道電子の活性は予測が難しい新たな要因で、ウンビヘキシウムなど超アクチノイドの化学特性に影響を与える可能性がある[20]

その他

宇宙規模では天然存在しうるとする説もあり、フィクションにも登場している。

スーパーマン (en:Lois & Clark: The New Adventures of Superman) に登場する架空の元素「クリプトナイト」(en:Kryptonite) は、126番元素と設定されている。

アメリカのSF作家ルー・アントネッリ (en:Lou Antonelli) は、126番元素がテキサスの露天掘り鉱山で発見される短編『Silence is Golden』(2003年8月、Revolution Science Fiction)を発表している。

関連項目

脚注

  1. ^ 異なるモデルでは、原子番号114、120、122、124も閉じた陽子殻として提案されている。
  2. ^ これらの核が合成され、崩壊シグナルが連続で記録される可能性はあるが、1マイクロ秒未満の崩壊は後続のシグナルと重なってしまう。特に未知の核が複数形成され、類似のアルファ粒子を連続で放出する場合に区別がつかなくなる場合がある。したがって、最も困難なのは崩壊を正しい親核種に帰属させることであり、検出器に到達する前に崩壊する超重原子はまったく検出されない。

出典

  1. ^ a b c Hoffman, Darleane C.; Lee, Diana M.; Pershina, Valeria (2006). “Transactinides and the future elements”. In Morss; Edelstein, Norman M.; Fuger, Jean. The Chemistry of the Actinide and Transactinide Elements (3rd ed.). Dordrecht, The Netherlands: Springer Science+Business Media. ISBN 1-4020-3555-1. https://www.researchgate.net/publication/226726863_Transactinide_Elements_and_Future_Elements 2023年7月15日閲覧。 
  2. ^ a b c d e Bemis, C.E.; Nix, J.R. (1977). “Superheavy elements - the quest in perspective”. Comments on Nuclear and Particle Physics 7 (3): 65–78. ISSN 0010-2709. http://inspirehep.net/record/1382449/files/v7-n3-p65.pdf. 
  3. ^ クリプトン加速による類似研究Physical Review Cアメリカ物理学会
  4. ^ Emsley, John (2011). Nature's Building Blocks: An A-Z Guide to the Elements (New ed.). New York, NY: Oxford University Press. p. 588. ISBN 978-0-19-960563-7 
  5. ^ Hoffman, Ghiorso & Seaborg 2000, pp. 404–405.
  6. ^ a b c d Sheline, R.K. (1976). “A Suggested Source of Element 126”. Zeitschrift für Physik A 279 (3): 255–257. Bibcode1976ZPhyA.279..255S. doi:10.1007/BF01408296. 
  7. ^ Hoffman, Ghiorso & Seaborg 2000, p. 413.
  8. ^ Hoffman, Ghiorso & Seaborg 2000, p. 416–417.
  9. ^ a b Lodhi, M.A.K., ed (March 1978). Superheavy Elements: Proceedings of the International Symposium on Superheavy Elements. Lubbock, Texas: Pergamon Press. ISBN 0-08-022946-8 
  10. ^ a b Hoffman, Ghiorso & Seaborg 2000, p. 417.
  11. ^ Lachner, J. (2012). “Attempt to detect primordial 244Pu on Earth”. Physical Review C 85 (1): 015801. Bibcode2012PhRvC..85a5801L. doi:10.1103/PhysRevC.85.015801. 
  12. ^ Emsley, John (2011). Nature's Building Blocks: An A–Z Guide to the Elements (New ed.). New York: Oxford University Press. p. 592. ISBN 978-0-19-960563-7 
  13. ^ Petermann, I; Langanke, K.; Martínez-Pinedo, G.; Panov, I.V.; Reinhard, P.G.; Thielemann, F.K. (2012). “Have superheavy elements been produced in nature?”. European Physical Journal A 48 (122): 122. arXiv:1207.3432. Bibcode2012EPJA...48..122P. doi:10.1140/epja/i2012-12122-6. https://www.researchgate.net/publication/229156774. 
  14. ^ Jason Wright (2017年3月16日). “Przybylski's Star III: Neutron Stars, Unbinilium, and aliens”. 2018年7月31日閲覧。
  15. ^ V. A. Dzuba; V. V. Flambaum; J. K. Webb (2017). “Isotope shift and search for metastable superheavy elements in astrophysical data”. Physical Review A 95 (6): 062515. arXiv:1703.04250. Bibcode2017PhRvA..95f2515D. doi:10.1103/PhysRevA.95.062515. 
  16. ^ Chatt, J. (1979). “Recommendations for the naming of elements of atomic numbers greater than 100”. Pure and Applied Chemistry 51 (2): 381–384. doi:10.1351/pac197951020381. 
  17. ^ Haire, Richard G. (2006). “Transactinides and the future elements”. In Morss; Edelstein, Norman M.; Fuger, Jean. The Chemistry of the Actinide and Transactinide Elements (3rd ed.). Dordrecht, The Netherlands: Springer Science+Business Media. p. 1724. ISBN 1-4020-3555-1 
  18. ^ a b Malli, G.L. (2006). “Dissociation energy of ekaplutonium fluoride E126F: The first diatomic with molecular spinors consisting of g atomic spinors”. The Journal of Chemical Physics 124 (7): 071102. Bibcode2006JChPh.124g1102M. doi:10.1063/1.2173233. PMID 16497023. 
  19. ^ a b Jacoby, Mitch (2006). “As-yet-unsynthesized superheavy atom should form a stable diatomic molecule with fluorine”. Chemical & Engineering News 84 (10): 19. doi:10.1021/cen-v084n010.p019a. 
  20. ^ a b c Fricke, B.; Greiner, W.; Waber, J. T. (1971). “The continuation of the periodic table up to Z = 172. The chemistry of superheavy elements”. Theoretica Chimica Acta 21 (3): 235–260. doi:10.1007/BF01172015. https://kobra.bibliothek.uni-kassel.de/bitstream/urn:nbn:de:hebis:34-2008081923380/1/Fricke_continuation_1971.pdf. 
  21. ^ Nefedov, V.I.; Trzhaskovskaya, M.B.; Yarzhemskii, V.G. (2006). “Electronic Configurations and the Periodic Table for Superheavy Elements”. Doklady Physical Chemistry 408 (2): 149–151. doi:10.1134/S0012501606060029. ISSN 0012-5016. http://www.primefan.ru/stuff/chem/nefedov.pdf. 
  22. ^ Oganessian, YT (2002年). “Element 118: results from the first 249Cf + 48Ca experiment”. Communication of the Joint Institute for Nuclear Research. 2011年7月22日時点のオリジナルよりアーカイブ。2023年7月9日閲覧。
  23. ^ “Livermore scientists team with Russia to discover element 118”. Livermore press release. (2006年12月3日). オリジナルの2011年10月17日時点におけるアーカイブ。. https://web.archive.org/web/20111017105348/https://www.llnl.gov/news/newsreleases/2006/NR-06-10-03.html 2008年1月18日閲覧。 
  24. ^ Oganessian, YT; Abdullin, F; Bailey, PD (2010). “Synthesis of a New Element with Atomic Number Z = 117”. Physical Review Letters 104 (14): 142502. Bibcode2010PhRvL.104n2502O. doi:10.1103/PhysRevLett.104.142502. PMID 20481935. 
  25. ^ Roberto, JB (2015年). “Actinide Targets for Super-Heavy Element Research”. cyclotron.tamu.edu. Texas A & M University. 2018年10月30日閲覧。
  26. ^ 平成23年度 研究業績レビュー(中間レビュー)の実施について”. www.riken.jp. RIKEN (2012年). 2019年3月30日時点のオリジナルよりアーカイブ。2017年5月5日閲覧。
  27. ^ a b c Superheavy Nuclei: which regions of nuclear map are accessible in the nearest studies”. cyclotron.tamu.edu. Texas A & M University (2015年). 2018年10月30日閲覧。
  28. ^ a b Zagrebaev, Karpov & Greiner 2013.
  29. ^ Giardina, G.; Fazio, G.; Mandaglio, G.; Manganaro, M.; Nasirov, A.K.; Romaniuk, M.V.; Saccà, C. (2010). “Expectations and limits to synthesize nuclei with Z ≥ 120”. International Journal of Modern Physics E 19 (5 & 6): 882–893. Bibcode2010IJMPE..19..882G. doi:10.1142/S0218301310015333. https://www.researchgate.net/publication/263915732. 
  30. ^ Rykaczewski, Krzysztof P. (2016年7月). “Super Heavy Elements and Nuclei”. people.nscl.msu.edu. MSU. 2017年4月30日閲覧。
  31. ^ Kuzmina, A.Z.; Adamian, G.G.; Antonenko, N.V.; Scheid, W. (2012). “Influence of proton shell closure on production and identification of new superheavy nuclei”. Physical Review C 85 (1): 014319. Bibcode2012PhRvC..85a4319K. doi:10.1103/PhysRevC.85.014319. https://www.researchgate.net/publication/257765028. 
  32. ^ Chemical & Engineering Newsアメリカ化学会
  33. ^ a b c d e Koura, H. (2011). Decay modes and a limit of existence of nuclei in the superheavy mass region (PDF). 4th International Conference on the Chemistry and Physics of the Transactinide Elements. 2018年11月18日閲覧
  34. ^ Kratz, J. V. (5 September 2011). The Impact of Superheavy Elements on the Chemical and Physical Sciences (PDF). 4th International Conference on the Chemistry and Physics of the Transactinide Elements. 2013年8月27日閲覧
  35. ^ Considine, Glenn D.; Kulik, Peter H. (2002). Van Nostrand's scientific encyclopedia (9 ed.). Wiley-Interscience. ISBN 978-0-471-33230-5. OCLC 223349096 
  36. ^ a b c Koura, H.; Chiba, S. (2013). “Single-Particle Levels of Spherical Nuclei in the Superheavy and Extremely Superheavy Mass Region”. Journal of the Physical Society of Japan 82 (1): 014201. Bibcode2013JPSJ...82a4201K. doi:10.7566/JPSJ.82.014201. https://www.researchgate.net/publication/258799250. 
  37. ^ a b Palenzuela, Y. M.; Ruiz, L. F.; Karpov, A.; Greiner, W. (2012). “Systematic Study of Decay Properties of Heaviest Elements”. Bulletin of the Russian Academy of Sciences: Physics 76 (11): 1165–1171. Bibcode2012BRASP..76.1165P. doi:10.3103/S1062873812110172. ISSN 1062-8738. http://nrv.jinr.ru/karpov/publications/Palenzuela12_BRAS.pdf. 
  38. ^ Search for superheavy elements among fossil fission tracks in zircon” (1980年). 2023年7月9日閲覧。
  39. ^ a b Santhosh, K.P.; Priyanka, B.; Nithya, C. (2016). “Feasibility of observing the α decay chains from isotopes of SHN with Z = 128, Z = 126, Z = 124 and Z = 122”. Nuclear Physics A 955 (November 2016): 156–180. arXiv:1609.05498. Bibcode2016NuPhA.955..156S. doi:10.1016/j.nuclphysa.2016.06.010. 
  40. ^ Chowdhury, R. P.; Samanta, C.; Basu, D.N. (2008). “Nuclear half-lives for α -radioactivity of elements with 100 ≤ Z ≤ 130”. Atomic Data and Nuclear Data Tables 94 (6): 781–806. arXiv:0802.4161. Bibcode2008ADNDT..94..781C. doi:10.1016/j.adt.2008.01.003. 
  41. ^ a b Okunev, V.S. (2018). “About islands of stability and limiting mass of the atomic nuclei”. IOP Conference Series: Materials Science and Engineering 468: 012012-1–012012-13. doi:10.1088/1757-899X/468/1/012012. https://www.researchgate.net/publication/329664372. 
  42. ^ Dvorak, J. (2006). “Doubly Magic Nucleus 270
    108
    Hs
    162
    . Physical Review Letters 97 (24): 242501. Bibcode2006PhRvL..97x2501D. doi:10.1103/PhysRevLett.97.242501. PMID 17280272. https://www.dora.lib4ri.ch/psi/islandora/object/psi%3A16351/datastream/PDF/view.
     
  43. ^ Seaborg (c. 2006). “transuranium element (chemical element)”. Encyclopædia Britannica. 2010年3月16日閲覧。
  44. ^ Umemoto, Koichiro; Saito, Susumu (1996). “Electronic Configurations of Superheavy Elements”. Journal of the Physical Society of Japan 65 (10): 3175–9. Bibcode1996JPSJ...65.3175U. doi:10.1143/JPSJ.65.3175. https://journals.jps.jp/doi/pdf/10.1143/JPSJ.65.3175 2021年1月31日閲覧。. 
  45. ^ a b Pyykkö, Pekka (2011). “A suggested periodic table up to Z ≤ 172, based on Dirac–Fock calculations on atoms and ions”. Physical Chemistry Chemical Physics 13 (1): 161–8. Bibcode2011PCCP...13..161P. doi:10.1039/c0cp01575j. PMID 20967377. 
  46. ^ Malli, G.L. (2007). “Thirty years of relativistic self-consistent field theory for molecules: relativistic and electron correlation effects for atomic and molecular systems of transactinide superheavy elements up to ekaplutonium E126 with g-atomic spinors in the ground state configuration”. Theoretical Chemistry Accounts 118 (3): 473–482. doi:10.1007/s00214-007-0335-1. 


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「UBH」の関連用語

UBHのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



UBHのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ダウ・ジョーンズダウ・ジョーンズ
Copyright © 2024 Dow Jones & Company, Inc. All Rights Reserved.
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのウンビヘキシウム (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS