素数 素数の概要

素数

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/09/21 13:35 UTC 版)

日本では、: prime number の日本語への訳語は「素数」とすることが1881年明治14年)に決まった[1][2]

一般には、素数は代数体の整数環の素元として定義される(そこでは反数などの同伴なものも素数に含まれる)。このため、有理整数

この節の加筆が望まれています。

紀元前1600年頃のエジプト第2中間期において、素数の初等的な性質が部分的に知られていたことが、リンド数学パピルスなどの資料によって示唆されている。例えば分数をエジプト式分数で表す場合、素数と合成数の場合で異なる計算をしなければならないからである。しかし、記録に残っている限りにおいて、明確に素数を研究対象としたのは古代ギリシア人が最初である。紀元前約300年頃に書かれたユークリッドの『原論』には素数が無数に存在することや、その他の素数の性質が証明されている。また、ユークリッドはメルセンヌ素数から完全数を構成する方法を示している。ギリシアの数学者、エラトステネスに因んで名付けられたエラトステネスの篩は、素数を列挙するための計算方法である。

古代ギリシア時代の後、17世紀になるまで素数の研究にはそれほどの進展が無かった。1640年に、ピエール・ド・フェルマーはフェルマーの小定理を(未証明ではあるが)述べた。この定理は後にライプニッツとオイラーによって証明された。

自然数を渦巻状に並べていき、素数だけを黒く塗ったもの(ウラムの螺旋)。
素数が高密度に集まった対角線、水平線、垂線が見て取れる。素数の分布が極めて難解であるために、この素数のパターンが示す事実については未だに明らかにされていない。

素数が無数に存在することは既に古代ギリシア時代から知られていて、ユークリッドが彼の著作『原論[19]の中で証明している。

ユークリッドによる証明

『原論』第9巻 命題20[19]
素数の個数はいかなる定められた素数の個数よりも多い。
定められた個数の素数を p1, p2, …, pn とせよ。p1, p2, …, pn より多い個数の素数があると主張する。
『原論』による証明[注釈 2]
定められた素数の個数が n 個であるとき、n 個の素数を小さい順番に並べて i 番目の素数を pi とする。
1 < p1 < p2 < … < pn.
このとき、n 個の素数をすべて掛け合わせた数に 1 を加えた数を q とすると、
q = p1 × p2 × … × pn + 1.
q は有限個の自然数の積に 1 を加えた数なので 1 より大きい自然数である。ゆえに、q は素数または合成数のどちらかである。
q が素数のとき、q は最大の素数 pn より大きい素数になるので、定められた個数の素数よりも多くの素数が存在する。
q が合成数のとき、q を割り切る素数が存在する。一方、q の定義より、すべての pi で割った余りは 1 になるので、q はすべての pi で割り切れない。したがって、すべての pi 以外に素数が存在する。すなわち、定められた個数の素数よりも多くの素数が存在する。(証明終
1878年、クンマーq = p1 × p2 × … × pn + 1 の代わりに q = p1 × p2 × … × pn − 1 を考えても同様に証明できることを示した。
自然数の有限集合 A の全ての要素を掛け合わせた自然数を f(A) とする。
定められた個数の素数からなる集合を A3 = {2, 3, 5} とするとき、f(A3) = 2 × 3 × 5 + 1 = 31 は素数なので、新しい素数 31 が得られる。したがって、定められた個数より多くの素数が存在する。
定められた個数の素数からなる集合を A4 = {2, 3, 5, 31} とするとき、f(A4) = 2 × 3 × 5 × 31 + 1 = 931 = 7 × 7 × 19 なので、新しい素数 719 が得られる。したがって、定められた個数より多くの素数が存在する。

他の証明

上記のユークリッドによる証明以外にも、素数が無数に存在することの証明方法が存在する。

素数判定と素因数分解

与えられた自然数 n が素数であるか合成数であるかを判定するためのアルゴリズムが多数考案されている。最も素朴な方法は、2 から n 以下の素数まで順番に割っていく、試し割り法と呼ばれる方法である。nn 以下の全ての素数で割り切れなければ n は素数である。試し割り法は、n が大きくなるに従って、急速に速度が低下するため、実用的ではない。任意の数に適用できる試し割り法よりも高速なアルゴリズムが考案されている。また、特殊な形をした数に対してはより高速なアルゴリズムも存在する。素数判定は、与えられた数が素数であるか否かだけを判定するものであるが、素因数分解とはより強く、与えられた数の全ての素因数を列挙することであるとも言える。

上記の通り2を除く偶数、2桁以上で末尾が5の数、数字和が3の倍数となる数は合成数と分かるのでそれを省き、7以上の素数を順番に割る方法がある。

分布

ある自然数までにどのくらいの素数があるのかという問題は、基本的だが非常に難しい問題である。 これに関して、次の素数定理は有名である。この定理は1896年に、アダマールとド・ラ・ヴァレ・プサンによって独立に証明された。

x 以下の素数の個数を π(x)素数計数関数)とすると、

この節は検証可能な参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。このテンプレートの使い方
出典検索?"素数" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL
(2024年7月)

固定ギア自転車のスプロケットやチェーンリングの歯数を素数にすることでスキッドポイントと呼ばれる摩耗点を分散化させてタイヤの寿命を向上させることができる。また、自転車や内燃機関など入力に脈動がある動力の歯車を素数にすると摩耗点が分散され歯車の寿命が向上する。

自然界の素数

自然界に現れる素数の一例として、素数ゼミと呼ばれるセミの一種がいる。アメリカ合衆国に分布するこのセミの成虫は、ある周期ごとに、13年ないしは17年間の周期で大量発生する。成虫になった後は、数週間だけを地上で成虫として過ごし交配と産卵を行う。このセミが素数周期で発生する理由として、寄生虫や捕食者に対抗するための進化であるという説や近縁種との交雑を避けるためであるという説がある。つまり、もしこのセミが12年の発生周期を持っていた場合、12の約数である2, 3, 4, 6年の寿命を持つ捕食者と同時に発生してしまうことになり、捕食対象にされやすくなる。また、地理的に近い場所で12年周期と15年周期のセミが存在した場合、60年ごとに2種は同時に発生し、交雑してしまう可能性がある。すると、雑種は発生周期がずれてしまい、同種のセミとの交尾の機会が失われる。素数の周期を持つものは交雑が起こりにくく、淘汰されにくいと考えられる[39]

また、ゼータ関数上の零点の分布の数式が、原子核のエネルギー間隔を表す式と一致することを示し、素数と核物理現象との関連性が示唆されている。

コンピュータゲーム

パナソニック株式会社が2011年にリリースしたiPad用アプリケーション「Panasonic Prime Smash!」は空中に打ち上げられたボールに書かれた数字が素数であればタップして得点、合成数であればスワイプすることで割り算し、素数になったらタップして得点にするゲームである[40]。第15回文化庁メディア芸術祭エンターテインメント部門の審査委員会推薦作品に選ばれ[41]、第6回企業ウェブグランプリ スチューデント部門特別賞を受賞した[42]

2016年にイギリスの数学者クリスチャン・ローソン=パーフェクトが公開した「これは素数ですか? (Is this prime?)」は、画面に表示される数字を素数と合成数に仕分けるゲームで、2021年7月にプレイ回数が300万回を突破した[43]。このゲームのプログラムにはミラー–ラビン素数判定法が組み込まれている[43]

連続素数

連続素数和

連続数 参照 含まれる素数列
2
5, 8, 12, 18, 24, 30, 36, 42, 52, 60, 68, 78, 84, … A001043
3
10, 15, 23, 31, 41, 49, 59, 71, 83, 97, 109, … A034961 A034962
4
17, 26, 36, 48, 60, 72, 88, 102, 120, 138, 152, … A034963
5
28, 39, 53, 67, 83, 101, 119, 139, 161, 181, … A034964 A034965
6
41, 56, 72, 90, 112, 132, 156, 180, 204, 228, … A127333
7
58, 75, 95, 119, 143, 169, 197, 223, 251, 281, … A127334 A082246
8
77, 98, 124, 150, 180, 210, 240, 270, 304, … A127335
9
100, 127, 155, 187, 221, 253, 287, 323, 363, … A127336 A082251
10
129, 158, 192, 228, 264, 300, 340, 382, 424, … A127337
11
160, 195, 233, 271, 311, 353, 399, 443, 491, … A127338 A127340
12
197, 236, 276, 318, 364, 412, 460, 510, 562, … A127339
13
238, 279, 323, 371, 423, 473, 527, … A127341

連続素数積

連続数 参照
2
6, 15, 35, 77, 143, 221, 323, 437, 667, 899, 1147, 1517, 1763, … A006094
3
30, 105, 385, 1001, 2431, 4199, 7429, 12673, 20677, 33263, 47027, … A046301
4
210, 1155, 5005, 17017, 46189, 96577, 215441, 392863, 765049, … A046302
5
2310, 15015, 85085, 323323, 1062347, 2800733, … A046303
6
30030, 255255, 1616615, 7436429, 30808063, 86822723, … A046324
7
510510, 4849845, … A046325
8
9699690, 111546435, … A046326
9
223092870, 3234846615, … A046327
10
6469693230, 100280245065, … A127342
11
200560490130, 3710369067405, … A127343
12
7420738134810, 152125131763605, … A127344

素数砂漠

自然数で素数でないものが連続している区間を「素数砂漠」という。例えば{24, 25, 26, 27, 28} は「長さ 5 の素数砂漠」である。素数砂漠を挟む2個の素数は 3 以上であるため、共に奇数である。このことから、素数砂漠の長さは必ず奇数である。いくらでも長い素数砂漠が構成できる(#分布を参照)。

初めから60個の素数の間隔は[44]

1, 2, 2, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 6, 2, 6, 4, 2, 6, 4, 6, 8, 4, 2, 4, 2, 4, 14, 4, 6, 2, 10, 2, 6, 6, 4, 6, 6, 2, 10, 2, 4, 2, 12, 12, 4, 2, 4, 6, 2, 10, 6, 6, 6, 2, 6, 4, 2, …

脚注

注釈

  1. ^ どの素数も他の自然数の積では表せないためこれ以上小さい生成系は存在しない。
  2. ^ ユークリッドによる証明では、変数・数式・任意の個数を示すパラメーター n を使用せずに、定められた個数が 3個の素数 Α, Β, Γ の場合に証明している。これを「準一般的」な証明という。詳細は素数が無数に存在することの証明#ユークリッドを参照。
  3. ^ レオンハルト・オイラーによる。現代的な用語で言えば、リーマンゼータ関数のオイラー積表示を用いる[20]
  4. ^ ジョージ・ポーヤによる[20][21]
  5. ^ ヒレル・ファステンバーグによる。en:Furstenberg's proof of the infinitude of primesを参照。
  6. ^ 素数が無数に存在することの証明#サイダックを参照[22]
  7. ^ 『天書の証明』第1章[21]を参照。原論文は Erdös, P. (1938-07), “Über die Reihe ∑ 1/p” (German) (pdf), Mathematica, Zutphen B: 1-2, https://users.renyi.hu/~p_erdos/1938-12.pdf 

出典

  1. ^ 創立80周年特集」『数学』第9巻第2号、1957年、72頁、doi:10.11429/sugaku1947.9.65 
  2. ^ 「東京數學會社雑誌第四十二號附録」『東京數學會社雑誌』1881年、13頁、doi:10.11429/sugakukaisya1877.1881.42sup_1 
  3. ^ a b オンライン整数列大辞典の数列 A40
  4. ^ The Largest Known Primes”. The Prime Pages (2021年5月13日). 2021年5月13日閲覧。
  5. ^ [数A11の倍数の判定法、見分け方とその証明]”. トムラボ. 2023年2月25日閲覧。
  6. ^ http://www4.math.sci.osaka-u.ac.jp/~ogawa/pdfs/v_lec/HimejiNishi-2006-12.pdf
  7. ^ a b c d Caldwell & Xiong 2012
  8. ^ a b Caldwell et al. 2012。古代ギリシアについては pp.3-4、アラビアについては p.6 を参照。
  9. ^ 例えば David E. Joyce's のユークリッド原論についてのコメンタリー Book VII, definitions 1 and 2 を参照。
  10. ^ Tarán 1981
  11. ^ Caldwell et al. 2012, pp. 7–13。特にStevin、Brancker、Wallis、Prestetの項を参照。
  12. ^ Caldwell et al. 2012, p. 15
  13. ^ Conway & Guy 1996, pp. 129f
  14. ^ Derbyshire 2003, p. 33
  15. ^ Conway & Guy 1996, pp. 129–130
  16. ^ φ関数についてはSierpiński 1988p. 245を参照。約数関数についてはSandifer 2007p. 59を参照。
  17. ^ "Arguments for and against the primality of 1".
  18. ^ "Why is the number one not prime?"
  19. ^ a b ユークリッド 2011, 9-20
  20. ^ a b Ribenboim 2001, 第1章
  21. ^ a b アイグナー & ツィーグラー 2012, 第1章
  22. ^ doi:10.2307/27642094 https://primes.utm.edu/notes/proofs/infinite/Saidak.html
  23. ^ この区間の最初の値はオンライン整数列大辞典の数列 A008950を、終了の値はオンライン整数列大辞典の数列 A008995をその区間幅についてはオンライン整数列大辞典の数列 A008996を参照
  24. ^ Tomás Oliveira e Silva, Goldbach conjecture verification. Retrieved 16 July 2013.
  25. ^ Jens Franke (2010年7月29日). “Conditional Calculation of pi(1024)”. 2018年12月30日閲覧。
  26. ^ Prime Formulas -- from Wolfram MathWorld
  27. ^ Willans, C. P (1964-12), “On formulae for the nth prime number”, The Mathematical Gazette 48 (366): 413-415, doi:10.2307/3611701, ISSN 0025-5572, JSTOR 3611701, https://jstor.org/stable/3611701 
  28. ^ Ribenboim 2001, 第3章
  29. ^ オンライン整数列大辞典の数列 A005846
  30. ^ オンライン整数列大辞典の数列 A014556
  31. ^ Jones, James P.; Sato, Daihachiro; Wada, Hideo; Wiens, Douglas (1976), "Diophantine representation of the set of prime numbers", American Mathematical Monthly 83: 449-464, doi:10.2307/2318339
  32. ^ オンライン整数列大辞典の数列 A002496
  33. ^ オンライン整数列大辞典の数列 A037896
  34. ^ オンライン整数列大辞典の数列 A152913
  35. ^ オンライン整数列大辞典の数列 A023195
  36. ^ Helfgott, H.A. (2013). "Major arcs for Goldbach's theorem". arXiv:1305.2897 [math.NT]。
  37. ^ Helfgott, H.A. (2012). "Minor arcs for Goldbach's problem". arXiv:1205.5252 [math.NT]。
  38. ^ Dossier Alexander von Humboldt-Professur - Alexander von Humboldt-Stiftung
  39. ^ 吉村 2008
  40. ^ 田崎恭子 (2011年5月16日). “素数の不思議をゲームで学ぶiPadアプリ”. リセマム (イード). https://resemom.jp/article/2011/05/16/2398.html 2023年8月24日閲覧。 
  41. ^ 第15回 受賞作品文化庁メディア芸術祭エンターテインメント部門”. 文化庁メディア芸術祭. 文化庁. 2023年8月24日閲覧。
  42. ^ 池田真也 (2012年12月10日). “「第6回企業ウェブ・グランプリ」受賞サイト決定、コンテンツへの思いがグランプリへ”. Web担当者Forum (インプレス). https://webtan.impress.co.jp/e/2012/12/10/14313 2023年8月24日閲覧。 
  43. ^ a b シヴォーン・ロバーツ (2021年7月26日). “51、57、91は素数? 数学者が考えたオンライン・ゲームが人気”. MIT Technology Review (KADOKAWA). https://www.technologyreview.jp/s/251275/is-57-a-prime-number-theres-a-game-for-that/ 2023年8月24日閲覧。 
  44. ^ オンライン整数列大辞典の数列 A001223

参考文献

関連項目

外部リンク




「素数」の続きの解説一覧




素数と同じ種類の言葉


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「素数」の関連用語

素数のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



素数のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの素数 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS