素数が無数に存在することの証明
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/11/22 01:00 UTC 版)
素数が無数に存在することの証明(そすうがむすうにそんざいすることのしょうめい)は、古くは紀元前3世紀頃のユークリッドの『原論』に記され、その後も多くの証明が与えられている。素数が無数に存在することは、しばしばユークリッドの定理(ユークリッドのていり、英: Euclid's theorem)と呼ばれる。
ユークリッド
『原論』第9巻命題20[1]で、素数が無数に存在することが示されている。その証明は、次の通りである[2]。なお「任意」は誤訳と思われる。
a, b, …, k を任意に与えられた素数のリストとする。その最小公倍数 P ≔ a × b × ⋯ × k に 1 を加えた数 P + 1 は、素数であるか、合成数のいずれかである。素数であれば、最初のリストに含まれない素数が得られたことになる。素数でなければ、何らかの素数 p で割り切れるが、p はやはり最初のリストに含まれない。なぜならば、リスト中の素数は P を割り切るので、P + 1 を割り切ることは不可能だからである。任意の素数のリストから、リストに含まれない新たな素数が得られるので、素数は無数に存在する。
この証明は、しばしば次のような背理法の形で表現される。
- 素数の個数が有限と仮定し、p1, … pn が素数の全てとする。その積 P = p1 × ⋯ × pn に 1 を加えた数 P + 1 は、p1, …, pn のいずれでも割り切れないので、素数でなければならない。しかし、これは p1, …, pn が素数の全てであるという仮定に反する。よって、仮定が誤りであり、素数は無限に存在する。
この形の証明のために、「ユークリッドは、背理法で素数が無数にあることを証明した」「ユークリッドの証明は、存在のみを示しており、具体的な構成の手続きを示していない」「ユークリッドは、最初のいくつかの素数の積に1を加えた数が素数であることを証明した」などの誤解をする者がいるが、いずれも正しくない[3]。『原論』の証明は背理法ではなく、直接証明である場合分けによるものである。また、最後の主張は「 2 × 3 × 5 × 7 × 11 × 13 + 1 = 59 × 509 = 30,031 」という反例により、歴史的にのみならず数学的にも誤りである。
1878年、クンマーは、P + 1 の代わりに P − 1 を考えても、同様に証明できることを注意した[4]。
ゴールドバッハ
ゴールドバッハは、1730年7月にオイラーに宛てた手紙の中で、フェルマー数
- 素数が無数に存在することの証明のページへのリンク