リーマン‐よそう〔‐ヨサウ〕【リーマン予想】
リーマン予想
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/03/07 14:58 UTC 版)



ミレニアム懸賞問題 |
---|
数学においてリーマン予想(リーマンよそう、英: Riemann hypothesis, 独: Riemannsche Vermutung、略称:RH)は、リーマンゼータ関数の零点が、負の偶数と、実部が 1/2 の複素数に限られるという予想である。リーマン仮説とも。ドイツの数学者ベルンハルト・リーマン(1859)により提唱されたため、その名称が付いている。この名称は密接に関連した類似物に対しても使われ、例えば有限体上の曲線のリーマン予想がある。
リーマン予想は素数の分布についての結果を含んでいる。適切な一般化と合わせて、純粋数学において最も重要な未解決問題であると考える数学者もいる[1]。リーマン予想は、ゴールドバッハの予想とともに、ヒルベルトの23の問題のリストのうちの第8問題の一部である。クレイ数学研究所のミレニアム懸賞問題の1つでもある。
リーマンゼータ関数 ζ(s) は 1 を除くすべての複素数 s で定義され、複素数の値をとる関数である。その零点(つまり、関数値が 0 となる s)のうち、負の偶数 s = −2, −4, −6, … はその自明な零点と呼ばれる。しかしながら、負の偶数以外の零点も存在し、非自明な零点と呼ばれる。リーマン予想はこの非自明な零点の位置についての主張である:
- リーマンゼータ関数のすべての非自明な零点の実部は 1/2 である。
いいかえると、
- リーマンゼータ関数のすべての非自明な零点は、複素数平面上の直線 1/2 + i t(t は実数)上にある。ここで i は虚数単位である。この直線を臨界線 (英語: critical line) という。
リーマン予想に関する非専門の本が何冊か存在する[注 1]。
概要
リーマンは素数の分布に関する研究を行っている際にオイラーが研究していた以下の級数をゼータ関数と名づけ、解析接続を用いて複素数全体への拡張を行った。
ゼータ関数を次のように定義する(複素数 s の実部が 1 より大きいとき、この級数は絶対収束する)。
-
この節の加筆が望まれています。
ディリクレの L 級数と他の代数体
リーマンのゼータ関数を、形式的には似ているがはるかに一般的な大域的 L-関数に置き換えることによって、リーマン予想を一般化することができる。このより広い設定において、大域的 L-関数の非自明な零点の実部が 1/2 であると期待される。リーマンのゼータ関数のみに対する古典的なリーマン予想よりもむしろ、これらの一般化されたリーマン予想が、数学におけるリーマン予想の真の重要性の理由である。
一般化されたリーマン予想 (generalized Riemann hypothesis) は、リーマン予想を全てのディリクレの L-関数へ拡張したものである。とくにこの予想は、ジーゲルの零点( 1/2 と 1 の間にある L 関数の零点)が存在しないという予想を含んでいる。
拡張されたリーマン予想 (extended Riemann hypothesis) は、リーマン予想を代数体の全てのデデキントゼータ関数へと拡張したものである。有理数体のアーベル拡大に対する拡張されたリーマン予想は、一般化されたリーマン予想と同値である。リーマン予想は代数体のヘッケ指標の L-関数へ拡張することもできる。
大リーマン予想 (grand Riemann hypothesis) は、全ての保型形式のゼータ関数(例えばヘッケ固有形式のメリン変換)へ拡張したものである。
種々の結果
リーマン予想を証明したと発表した数学者もいるが、正しい解答として受け入れられたものは2019年9月現在存在しない。Watkins (2007) はいくつかの正しくない解答をリストしており、より多くの正しくない解答は頻繁に発表されている[14]。
例えば2004年には、ルイ・ド・ブランジュが証明に成功したと発表したが後に否定された[15][16]。2018年には、マイケル・アティヤが微細構造定数の導出の副産物としてリーマン予想を証明したと発表したが、多くの専門家は懐疑的に見ている[17][18]。この論文は王立協会が発行する科学誌に投稿され、専門家らにより検証が進められていた[19]ものの、発表から数ヶ月を経て著者は死去、論文は撤回となった。
作用素理論
→詳細は「ヒルベルト・ポリア予想」を参照ヒルベルトとポリヤはリーマン予想を導出する1つの方法は自己共役作用素を見つけることであると提案した。その存在から ζ(s) の零点の実部に関する例の主張が、実固有値に主張を適用すると従うのである。このアイデアのいくつかの根拠は、零点がある作用素の固有値に対応するリーマンゼータ関数のいくつかの類似から来る:有限体上の多様体のゼータ関数の零点はエタールコホモロジー群上のフロベニウス元の固有値に対応し、セルバーグゼータ関数の零点はリーマン面のラプラス作用素の固有値であり、p 進ゼータ関数の零点はイデール類群へのガロワ作用の固有ベクトルに対応する。
Odlyzko (1987) は、リーマンゼータ関数の零点の分布はガウスのユニタリアンサンブルから来るランダム行列の固有値といくつかの統計学的性質を共有していることを示した。これはヒルベルト–ポリヤ予想にいくらかの根拠を与える。
1999年、マイケル・ベリーとジョナサン・キーティングは古典ハミルトニアン H = xp のある未知の量子化
この節の加筆が望まれています。零点の個数
関数等式を偏角の原理と合わせて考えれば虚部が 0 と T の間にあるゼータ関数の零点の個数は s = 1/2 + iT に対して次で与えられる:
-
この節の加筆が望まれています。
Hardy (1914) と Hardy & Littlewood (1921) は、ゼータ関数に関連したある関数のモーメントを考えることによって、臨界線上には零点が無限個存在することを証明した。Selberg (1942) は、少なくとも(小さい)正の割合の零点は臨界帯上にあることを証明した。Levinson (1974) は、ゼータ関数の零点をゼータ関数の導関数の零点と関連付けることで、それを 1/3 に改善し、Conrey (1989) はさらに 2/5 に改善した。
真偽の議論
この節の加筆が望まれています。リーマン予想に関する数学の論文は、それが真であるかどうか注意深く明言しない傾向にある。Riemann (1859) や Bombieri (2000) のように、意見を述べる人の大半は、リーマン予想は正しいと予想(あるいは少なくとも期待)している。これについて深刻に疑問を呈することを表明する人は少なく、その中には Ivić (2008) や Littlewood (1962) がいる。Ivić は懐疑的に考えている理由を並べている。また Littlewood は、誤りであると信じており、正しいという何らの証拠がない、正しいことを示す想像できる理由も全く存在しない、ときっぱり述べている。サーベイの論文 (Bombieri 2000, Conrey 2003, Sarnak 2008) の共通認識としては、リーマン予想が正しいという証拠は、強いが圧倒的ではないので、おそらく正しいであろうが、これを疑問視するのも妥当であるとしている。
関連項目
- 与えられた数より小さい素数の個数について - リーマンの原論文。エドワーズ (2012)・鹿野 (1991)・リーマン (2004)に収録。
- 一般リーマン予想
- L関数
- ゼータ関数
- 素数定理
- 素数計数関数
- 大リーマン予想
- ヒルベルトの23の問題
- ヒルベルトの第八問題
- ヒルベルト・ポリア予想
- ベルンハルト・リーマン
- ミレニアム懸賞問題
- モンゴメリー・オドリズコ予想
- 有限体上の曲線に対するリーマン予想
脚注
注釈
- ^ 例えば ブルーバックス (2015)[2]、Derbyshire (2003), Rockmore (2005), (Sabbagh 2003a, 2003b), du Sautoy (2003).本 Edwards (1974), Patterson (1988), Borwein et al. (2008), Mazur & Stein (2015) は数学的な入門を与え、Titchmarsh (1986), Ivić (1985), Karatsuba & Voronin (1992) は進んだモノグラフである。さらに、John Forbes Nash Jr. と Michael Th. Rassias によって編集された本 Open Problems in Mathematics は、Alain Connes によるリーマン予想に関する広範なエッセイを取り上げている[3][4]
- ^ Re は複素数の実部を示す記号。
- ^ 素数計数関数 π(x) の対数積分による近似公式を指す。同値命題の節の第一の命題を参照。リーマンの素数公式より、π(x) の対数積分による近似の誤差項はゼータ関数の零点が臨界帯の両端から遠ければ遠いほど小さくなることが分かる。この距離が最大限に遠いということ、即ち全てのゼータ零点が臨界帯の中心線上に整列しており、近似の誤差がその方針で考え得る限り最も小さくなるだろうということがリーマン予想のそもそもの意味である。
- ^ 当然のことだが、はっきりした根拠を持たずに。
出典
- ^ Bombieri 2000.
- ^ 中村, 亨. (2015). リーマン予想とは何か. 講談社, 東京
- ^ Nash, J. F.; Rassias, M. Th. (2016). Open Problems in Mathematics. Springer, New York
- ^ Connes, Alain (2016). “An Essay on the Riemann Hypothesis”. In: Open Problems in Mathematics (J. F. Nash Jr. and M. Th. Rassias, eds.), Springer: 225–257. doi:10.1007/978-3-319-32162-2_5.
- ^ ダービーシャー 2004, pp. 309, 411.
- ^ Helge von Koch, "Sur la distribution des nombres premiers", Acta Mathematica 24 (1901), 159–182. doi:10.1007/BF02403071
- ^ Lagarias, Jeffrey C., "An elementary problem equivalent to the Riemann hypothesis." American Mathematical Monthly 109 (2002), no. 6, 534-543.
- ^ Ingham 1932, Theorem 30.
- ^ Ingham 1932, p. 82.
- ^ J.E. Littlewood, 1912; see for instance: paragraph 14.25 in Titchmarsh (1986)
- ^ Franel & Landau 1924.
- ^ Titchmarsh 1986.
- ^ Nicely 1999.
- ^ “the Riemann hypothesis”. arxiv.org (2018年10月3日). 2018年10月3日閲覧。
- ^ “リーマン予想 - 意味・説明・解説 : ASCII.jpデジタル用語辞典”. yougo.ascii.jp. 2018年10月11日閲覧。
- ^ リーマン予想の150年. Kurokawa, Nobushige, 1952-, 黒川, 信重, 1952-. 東京: 岩波書店. (2009). ISBN 9784000067928. OCLC 676013439
- ^ “Famed mathematician claims proof of 160-year-old Riemann hypothesis” (英語). New Scientist 2018年9月25日閲覧。
- ^ “2018-The_Riemann_Hypothesis.pdf”. Google Docs 2018年9月25日閲覧。
- ^ “超難問「リーマン予想」証明? 英数学者に懐疑的な声も:朝日新聞デジタル” (日本語). 朝日新聞デジタル 2018年10月11日閲覧。
参考文献
- 和書
- ハロルド・M・エドワーズ『明解 ゼータ関数とリーマン予想』鈴木治郎 訳、講談社、2012年6月25日。 ISBN 978-4-06-155799-4。 - 原タイトル:Riemann's Zeta Function.
- 鹿野健 編『リーマン予想』日本評論社、1991年9月30日。 ISBN 4-535-78181-8。
- ジョン・ダービーシャー『素数に憑かれた人たち リーマン予想への挑戦』松浦俊輔 訳、日経BP社、2004年8月30日。 ISBN 4-8222-8204-X。 - 原タイトル:Prime obsession.
- リーマン『リーマン論文集』足立恒雄・杉浦光夫・長岡亮介 編、朝倉書店、2004年2月20日。 ISBN 4-254-11460-5。
- 黒川信重:「リーマン予想の150年」、岩波書店、ISBN 978-4-00-006792-8 (2009年11月5日).
- 黒川信重(編著):「リーマン予想がわかる」、日本評論社(数学セミナー増刊)(2009年11月25日).
- 黒川信重、小山信也:「リーマン予想のこれまでとこれから」、日本評論社、ISBN 978-4-535-78550-2 (2009年12月10日).
- 黒川信重:「リーマン予想の先へ:深リーマン予想ーDRH」、東京図書、ISBN 978-4-489-02151-0 (2013年4月25日).
- 仲村亮:「リーマン予想とはなにか:全ての素数を表す式は可能か」、講談社ブルーバックス、ISBN 978-4-06-257828-8 (2015年8月20日).
- 黒川信重:「リーマンと数論」、共立出版、ISBN 978-4-320-11234-6 (2016年12月15日).
- 洋書
- Artin, Emil (1924), “Quadratische Körper im Gebiete der höheren Kongruenzen. II. Analytischer Teil”, Mathematische Zeitschrift 19 (1): 207–246, doi:10.1007/BF01181075
- Backlund, R. J. (1914), “Sur les Zéros de la Fonction ζ(s) de Riemann”, C. R. Acad. Sci. Paris 158: 1979–1981
- Beurling, Arne (1955), “A closure problem related to the Riemann zeta-function”, Proceedings of the National Academy of Sciences of the United States of America 41 (5): 312–314, doi:10.1073/pnas.41.5.312, MR 0070655
- Bohr, H.; Landau, E. (1914), “Ein Satz über Dirichletsche Reihen mit Anwendung auf die ζ-Funktion und die L-Funktionen”, Rendiconti del Circolo Matematico di Palermo 37 (1): 269–272, doi:10.1007/BF03014823
- Bombieri, Enrico (2000) (PDF), The Riemann Hypothesis – official problem description, Clay Mathematics Institute 2008年10月25日閲覧。 Reprinted in (Borwein et al. 2008).
- Borwein, Peter; Choi, Stephen; Rooney, Brendan et al., eds. (2008), The Riemann Hypothesis: A Resource for the Afficionado and Virtuoso Alike, CMS Books in Mathematics, New York: Springer, doi:10.1007/978-0-387-72126-2, ISBN 978-0-387-72125-5
- Borwein, Peter; Ferguson, Ron; Mossinghoff, Michael J. (2008), “Sign changes in sums of the Liouville function”, Mathematics of Computation 77 (263): 1681–1694, doi:10.1090/S0025-5718-08-02036-X, MR 2398787
- de Branges, Louis (1992), “The convergence of Euler products”, Journal of Functional Analysis 107 (1): 122–210, doi:10.1016/0022-1236(92)90103-P, MR 1165869
- Cartier, P. (1982), “Comment l'hypothèse de Riemann ne fut pas prouvée”, Seminar on Number Theory, Paris 1980–81 (Paris, 1980/1981), Progr. Math., 22, Boston, MA: Birkhäuser Boston, pp. 35–48, MR 693308
- Connes, Alain (1999), “Trace formula in noncommutative geometry and the zeros of the Riemann zeta function”, Selecta Mathematica. New Series 5 (1): 29–106, arXiv:math/9811068, doi:10.1007/s000290050042, MR 1694895
- Connes, Alain (2000), “Noncommutative geometry and the Riemann zeta function”, Mathematics: frontiers and perspectives, Providence, R.I.: American Mathematical Society, pp. 35–54, MR 1754766
- Conrey, J. B. (1989), “More than two fifths of the zeros of the Riemann zeta function are on the critical line”, J. Reine angew. Math. 399: 1–16, MR 1004130
- Conrey, J. Brian (2003), “The Riemann Hypothesis” (PDF), Notices of the American Mathematical Society: 341–353 Reprinted in (Borwein et al. 2008).
- Conrey, J. B.; Li, Xian-Jin (2000), “A note on some positivity conditions related to zeta and L-functions”, International Mathematics Research Notices 2000 (18): 929–940, arXiv:math/9812166, doi:10.1155/S1073792800000489, MR 1792282
- Deligne, Pierre (1974), “La conjecture de Weil. I”, Publications Mathématiques de l'IHÉS 43: 273–307, doi:10.1007/BF02684373, MR 0340258
- Deligne, Pierre (1980), “La conjecture de Weil : II”, Publications Mathématiques de l'IHÉS 52: 137–252, doi:10.1007/BF02684780
- Deninger, Christopher (1998), “Some analogies between number theory and dynamical systems on foliated spaces”, Proceedings of the International Congress of Mathematicians, Vol. I (Berlin, 1998), Documenta Mathematica, pp. 163–186, MR 1648030
- Derbyshire, John (2003), Prime Obsession, Joseph Henry Press, Washington, DC, ISBN 978-0-309-08549-6, MR 1968857
- Dudek, Adrian W. (2014-08-21), “On the Riemann hypothesis and the difference between primes”, International Journal of Number Theory 11 (03): 771–778, doi:10.1142/S1793042115500426, ISSN 1793-0421
- Dyson, Freeman (2009), “Birds and frogs”, Notices of the American Mathematical Society 56 (2): 212–223, MR 2483565
- Edwards, H. M. (1974), Riemann's Zeta Function, New York: Dover Publications, ISBN 978-0-486-41740-0, MR 0466039
- Fesenko, Ivan (2010), “Analysis on arithmetic schemes. II”, Journal of K-theory 5 (3): 437–557, doi:10.1017/is010004028jkt103
- Ford, Kevin (2002), “Vinogradov's integral and bounds for the Riemann zeta function”, Proceedings of the London Mathematical Society. Third Series 85 (3): 565–633, doi:10.1112/S0024611502013655, MR 1936814
- Franel, J.; Landau, E. (1924), “Les suites de Farey et le problème des nombres premiers" (Franel, 198–201); "Bemerkungen zu der vorstehenden Abhandlung von Herrn Franel (Landau, 202–206)”, Göttinger Nachrichten: 198–206
- Ghosh, Amit (1983), “On the Riemann zeta function—mean value theorems and the distribution of |S(T)|”, J. Number Theory 17: 93–102, doi:10.1016/0022-314X(83)90010-0
- Gourdon, Xavier (2004) (PDF), The 1013 first zeros of the Riemann Zeta function, and zeros computation at very large height
- Gram, J. P. (1903), “Note sur les zéros de la fonction ζ(s) de Riemann”, Acta Mathematica 27: 289–304, doi:10.1007/BF02421310
- Hadamard, Jacques (1896), “Sur la distribution des zéros de la fonction ζ(s) et ses conséquences arithmétiques”, Bulletin Société Mathématique de France 14: 199–220 Reprinted in (Borwein et al. 2008).
- Hardy, G. H. (1914), “Sur les Zéros de la Fonction ζ(s) de Riemann”, C. R. Acad. Sci. Paris 158: 1012–1014, JFM 45.0716.04 Reprinted in (Borwein et al. 2008).
- Hardy, G. H.; Littlewood, J. E. (1921), “The zeros of Riemann's zeta-function on the critical line”, Math. Z. 10 (3–4): 283–317, doi:10.1007/BF01211614
- Haselgrove, C. B. (1958), “A disproof of a conjecture of Pólya”, Mathematika 5 (2): 141–145, doi:10.1112/S0025579300001480, ISSN 0025-5793, MR 0104638, Zbl 0085.27102 Reprinted in (Borwein et al. 2008).
- Haselgrove, C. B.; Miller, J. C. P. (1960), Tables of the Riemann zeta function, Royal Society Mathematical Tables, Vol. 6, Cambridge University Press, ISBN 978-0-521-06152-0, MR 0117905 Review
- Hutchinson, J. I. (1925), “On the Roots of the Riemann Zeta-Function”, Transactions of the American Mathematical Society 27 (1): 49–60, doi:10.2307/1989163, JSTOR 1989163
- Ingham, A.E. (1932), The Distribution of Prime Numbers, Cambridge Tracts in Mathematics and Mathematical Physics, 30, Cambridge University Press. Reprinted 1990, ISBN 978-0-521-39789-6, MR 1074573
- Ireland, Kenneth; Rosen, Michael (1990), A Classical Introduction to Modern Number Theory (Second edition), New York: Springer, ISBN 0-387-97329-X
- Ivić, A. (1985), The Riemann Zeta Function, New York: John Wiley & Sons, ISBN 978-0-471-80634-9, MR 0792089 (Reprinted by Dover 2003)
- Ivić, Aleksandar (2008), “On some reasons for doubting the Riemann hypothesis”, in Borwein, Peter; Choi, Stephen; Rooney, Brendan et al., The Riemann Hypothesis: A Resource for the Afficionado and Virtuoso Alike, CMS Books in Mathematics, New York: Springer, pp. 131–160, arXiv:math.NT/0311162, ISBN 978-0-387-72125-5
- Karatsuba, A. A. (1984a), “Zeros of the function ζ(s) on short intervals of the critical line” (Russian), Izv. Akad. Nauk SSSR, Ser. Mat. 48 (3): 569–584, MR 0747251
- Karatsuba, A. A. (1984b), “Distribution of zeros of the function ζ(1/2 + it)” (Russian), Izv. Akad. Nauk SSSR, Ser. Mat. 48 (6): 1214–1224, MR 0772113
- Karatsuba, A. A. (1985), “Zeros of the Riemann zeta-function on the critical line” (Russian), Trudy Mat. Inst. Steklov. (167): 167–178, MR 0804073
- Karatsuba, A. A. (1992), “On the number of zeros of the Riemann zeta-function lying in almost all short intervals of the critical line” (Russian), Izv. Ross. Akad. Nauk, Ser. Mat. 56 (2): 372–397, MR 1180378
- Karatsuba, A. A.; Voronin, S. M. (1992), The Riemann zeta-function, de Gruyter Expositions in Mathematics, 5, Berlin: Walter de Gruyter & Co., ISBN 978-3-11-013170-3, MR 1183467
- Keating, Jonathan P.; Snaith, N. C. (2000), “Random matrix theory and ζ(1/2 + it)”, Communications in Mathematical Physics 214 (1): 57–89, doi:10.1007/s002200000261, MR 1794265
- Knauf, Andreas (1999), “Number theory, dynamical systems and statistical mechanics”, Reviews in Mathematical Physics. A Journal for Both Review and Original Research Papers in the Field of Mathematical Physics 11 (8): 1027–1060, doi:10.1142/S0129055X99000325, MR 1714352
- von Koch, Helge (1901), “Sur la distribution des nombres premiers”, Acta Mathematica 24: 159–182, doi:10.1007/BF02403071
- Kurokawa, Nobushige (1992), “Multiple zeta functions: an example”, Zeta functions in geometry (Tokyo, 1990), Adv. Stud. Pure Math., 21, Tokyo: Kinokuniya, pp. 219–226, MR 1210791
- Lapidus, Michel L. (2008), In search of the Riemann zeros, Providence, R.I.: American Mathematical Society, ISBN 978-0-8218-4222-5, MR 2375028
- Lavrik, A. F. (2001), “Zeta-function”, in Hazewinkel, Michiel, Encyclopedia of Mathematics, Springer, ISBN 978-1-55608-010-4
- Lehmer, D. H. (1956), “Extended computation of the Riemann zeta-function”, Mathematika. A Journal of Pure and Applied Mathematics 3 (2): 102–108, doi:10.1112/S0025579300001753, MR 0086083
- Leichtnam, Eric (2005), “An invitation to Deninger's work on arithmetic zeta functions”, Geometry, spectral theory, groups, and dynamics, Contemp. Math., 387, Providence, RI: Amer. Math. Soc., pp. 201–236, MR 2180209.
- Levinson, N. (1974), “More than one-third of the zeros of Riemann's zeta function are on σ = 1/2”, Adv. In Math. 13 (4): 383–436, doi:10.1016/0001-8708(74)90074-7, MR 0564081
- Littlewood, J. E. (1962), “The Riemann hypothesis”, The scientist speculates: an anthology of partly baked idea, New York: Basic books
- van de Lune, J.; te Riele, H. J. J.; Winter, D. T. (1986), “On the zeros of the Riemann zeta function in the critical strip. IV”, Mathematics of Computation 46 (174): 667–681, doi:10.2307/2008005, JSTOR 2008005, MR 829637
- Massias, J.-P.; Nicolas, Jean-Louis; Robin, G. (1988), “Évaluation asymptotique de l'ordre maximum d'un élément du groupe symétrique”, Polska Akademia Nauk. Instytut Matematyczny. Acta Arithmetica 50 (3): 221–242, MR 960551
- Mazur, Barry; Stein, William (2014), Primes. What is Riemann's hypothesis?
- Montgomery, Hugh L. (1973), “The pair correlation of zeros of the zeta function”, Analytic number theory, Proc. Sympos. Pure Math., XXIV, Providence, R.I.: American Mathematical Society, pp. 181–193, MR 0337821 Reprinted in (Borwein et al. 2008).
- Montgomery, Hugh L. (1983), “Zeros of approximations to the zeta function”, in Erdős, Paul, Studies in pure mathematics. To the memory of Paul Turán, Basel, Boston, Berlin: Birkhäuser, pp. 497–506, ISBN 978-3-7643-1288-6, MR 820245
- Murphy, P. Terrence: "Study of Bernhard Riemann's 1859 Paper", Paramount Ridge Press, ISBN 978-0996167130 (2020).
- Nicely, Thomas R. (1999), “New maximal prime gaps and first occurrences”, Mathematics of Computation 68 (227): 1311–1315, doi:10.1090/S0025-5718-99-01065-0, MR 1627813.
- Nyman, Bertil (1950), On the One-Dimensional Translation Group and Semi-Group in Certain Function Spaces, PhD Thesis, University of Uppsala: University of Uppsala, MR 0036444
- Odlyzko, A. M.; te Riele, H. J. J. (1985), “Disproof of the Mertens conjecture”, Journal für die reine und angewandte Mathematik 357 (357): 138–160, doi:10.1515/crll.1985.357.138, MR 783538
- Odlyzko, A. M. (1987), “On the distribution of spacings between zeros of the zeta function”, Mathematics of Computation 48 (177): 273–308, doi:10.2307/2007890, JSTOR 2007890, MR 866115
- Odlyzko, A. M. (1990), “Bounds for discriminants and related estimates for class numbers, regulators and zeros of zeta functions: a survey of recent results”, Séminaire de Théorie des Nombres de Bordeaux, Série 2 2 (1): 119–141, doi:10.5802/jtnb.22, MR 1061762
- Odlyzko, A. M. (1992), The 1020-th zero of the Riemann zeta function and 175 million of its neighbors This unpublished book describes the implementation of the algorithm and discusses the results in detail.
- Odlyzko, A. M. (1998), The 1021st zero of the Riemann zeta function
- Ono, Ken; Soundararajan, K. (1997), “Ramanujan's ternary quadratic form”, Inventiones Mathematicae 130 (3): 415–454, doi:10.1007/s002220050191
- Patterson, S. J. (1988), An introduction to the theory of the Riemann zeta-function, Cambridge Studies in Advanced Mathematics, 14, Cambridge University Press, ISBN 978-0-521-33535-5, MR 933558
- Radziejewski, Maciej (2007), “Independence of Hecke zeta functions of finite order over normal fields”, Transactions of the American Mathematical Society 359 (5): 2383–2394, doi:10.1090/S0002-9947-06-04078-5, MR 2276625, "There are infinitely many nonisomorphic algebraic number fields whose Dedekind zeta functions have infinitely many nontrivial multiple zeros."
- Ribenboim, Paulo (1996), The New Book of Prime Number Records, New York: Springer, ISBN 0-387-94457-5
- Riemann, Bernhard (1859), “Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse”, Monatsberichte der Berliner Akademie. In Gesammelte Werke, Teubner, Leipzig (1892), Reprinted by Dover, New York (1953). Original manuscript (with English translation). Reprinted in (Borwein et al. 2008) and (Edwards 1974)
- Riesel, Hans; Göhl, Gunnar (1970), “Some calculations related to Riemann's prime number formula”, Mathematics of Computation 24 (112): 969–983, doi:10.2307/2004630, JSTOR 2004630, MR 0277489
- Riesz, M. (1916), “Sur l'hypothèse de Riemann”, Acta Mathematica 40: 185–190, doi:10.1007/BF02418544
- Robin, G. (1984), “Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann”, Journal de Mathématiques Pures et Appliquées, Neuvième Série 63 (2): 187–213, MR 774171
- Rockmore, Dan (2005), Stalking the Riemann hypothesis, Pantheon Books, ISBN 978-0-375-42136-5, MR 2269393
- Rosser, J. Barkley; Yohe, J. M.; Schoenfeld, Lowell (1969), “Rigorous computation and the zeros of the Riemann zeta-function. (With discussion)”, Information Processing 68 (Proc. IFIP Congress, Edinburgh, 1968), Vol. 1: Mathematics, Software, Amsterdam: North-Holland, pp. 70–76, MR 0258245
- Rudin, Walter (1973), Functional Analysis, 1st edition (January 1973), New York: McGraw-Hill, ISBN 0-070-54225-2
- Sabbagh, Karl (2003a), The Riemann hypothesis, Farrar, Straus and Giroux, New York, ISBN 978-0-374-25007-2, MR 1979664
- Sabbagh, Karl (2003b), Dr. Riemann's zeros, Atlantic Books, London, ISBN 978-1-843-54101-1
- Salem, Raphaël (1953), “Sur une proposition équivalente à l'hypothèse de Riemann”, Les Comptes rendus de l'Académie des sciences 236: 1127–1128, MR 0053148
- Sarnak, Peter (2008), “Problems of the Millennium: The Riemann Hypothesis”, in Borwein, Peter; Choi, Stephen; Rooney, Brendan et al. (PDF), The Riemann Hypothesis: A Resource for the Afficionado and Virtuoso Alike, CMS Books in Mathematics, New York: Springer, pp. 107–115, ISBN 978-0-387-72125-5
- du Sautoy, Marcus (2003), The music of the primes, HarperCollins Publishers, ISBN 978-0-06-621070-4, MR 2060134
- Schoenfeld, Lowell (1976), “Sharper bounds for the Chebyshev functions θ(x) and ψ(x). II”, Mathematics of Computation 30 (134): 337–360, doi:10.2307/2005976, JSTOR 2005976, MR 0457374
- Schumayer, Daniel; Hutchinson, David A. W. (2011), Physics of the Riemann Hypothesis, arXiv:1101.3116
- Selberg, Atle (1942), “On the zeros of Riemann's zeta-function”, Skr. Norske Vid. Akad. Oslo I. 10: 59 pp, MR 0010712
- Selberg, Atle (1946), “Contributions to the theory of the Riemann zeta-function”, Arch. Math. Naturvid. 48 (5): 89–155, MR 0020594
- Selberg, Atle (1956), “Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series”, J. Indian Math. Soc. (N.S.) 20: 47–87, MR 0088511
- Serre, Jean-Pierre (1969–1970), “Facteurs locaux des fonctions zeta des varietés algébriques (définitions et conjectures)”, Séminaire Delange-Pisot-Poitou 19
- Sheats, Jeffrey T. (1998), “The Riemann hypothesis for the Goss zeta function for Fq[T]”, Journal of Number Theory 71 (1): 121–157, doi:10.1006/jnth.1998.2232, MR 1630979
- Siegel, C. L. (1932), “Über Riemanns Nachlaß zur analytischen Zahlentheorie”, Quellen Studien zur Geschichte der Math. Astron. und Phys. Abt. B: Studien 2: 45–80 Reprinted in Gesammelte Abhandlungen, Vol. 1. Berlin: Springer-Verlag, 1966.
- Speiser, Andreas (1934), “Geometrisches zur Riemannschen Zetafunktion”, Mathematische Annalen 110: 514–521, doi:10.1007/BF01448042, JFM 60.0272.04
- Spira, Robert (1968), “Zeros of sections of the zeta function. II”, Mathematics of Computation 22: 163–173, doi:10.2307/2004774, MR 0228456
- Stein, William; Mazur, Barry (2007) (PDF), What is Riemann’s Hypothesis?, オリジナルの2009年3月27日時点におけるアーカイブ。
- Suzuki, Masatoshi (2011), “Positivity of certain functions associated with analysis on elliptic surfaces”, Journal of Number Theory 131 (10): 1770–1796, doi:10.1016/j.jnt.2011.03.007
- Titchmarsh, Edward Charles (1935), “The Zeros of the Riemann Zeta-Function”, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences (The Royal Society) 151 (873): 234–255, doi:10.1098/rspa.1935.0146, JSTOR 96545
- Titchmarsh, Edward Charles (1936), “The Zeros of the Riemann Zeta-Function”, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences (The Royal Society) 157 (891): 261–263, doi:10.1098/rspa.1936.0192, JSTOR 96692
- Titchmarsh, Edward Charles (1986), The theory of the Riemann zeta-function (2nd ed.), The Clarendon Press Oxford University Press, ISBN 978-0-19-853369-6, MR 882550
- Trudgian, Timothy (2011), “On the success and failure of Gram's Law and the Rosser Rule”, Acta Arithmetica 125 (3): 225–256, doi:10.4064/aa148-3-2
- Turán, Paul (1948), “On some approximative Dirichlet-polynomials in the theory of the zeta-function of Riemann”, Danske Vid. Selsk. Mat.-Fys. Medd. 24 (17): 36, MR 0027305 Reprinted in (Borwein et al. 2008).
- Turing, Alan M. (1953), “Some calculations of the Riemann zeta-function”, Proceedings of the London Mathematical Society. Third Series 3: 99–117, doi:10.1112/plms/s3-3.1.99, MR 0055785
- de la Vallée-Poussin, Ch.J. (1896), “Recherches analytiques sur la théorie des nombers premiers”, Ann. Soc. Sci. Bruxelles 20: 183–256
- de la Vallée-Poussin, Ch.J. (1899–1900), “Sur la fonction ζ(s) de Riemann et la nombre des nombres premiers inférieurs à une limite donnée”, Mem. Couronnes Acad. Sci. Belg. 59 (1) Reprinted in (Borwein et al. 2008).
- Varga, Ricahrd S.: Scientific Computation on Mathemathical Problems and Conjectures, SIAM, ISBN 0-89871-257-2 (1990). Chap. 3: "Theoretical and Computational Aspects of the Riemann Hypothesis".
- Weil, André (1948), Sur les courbes algébriques et les variétés qui s'en déduisent, Actualités Sci. Ind., no. 1041 = Publ. Inst. Math. Univ. Strasbourg 7 (1945), Hermann et Cie., Paris, MR 0027151
- Weil, André (1949), “Numbers of solutions of equations in finite fields”, Bulletin of the American Mathematical Society 55 (5): 497–508, doi:10.1090/S0002-9904-1949-09219-4, MR 0029393 Reprinted in Oeuvres Scientifiques/Collected Papers by Andre Weil ISBN 0-387-90330-5
- Weinberger, Peter J. (1973), “On Euclidean rings of algebraic integers”, Analytic number theory ( St. Louis Univ., 1972), Proc. Sympos. Pure Math., 24, Providence, R.I.: Amer. Math. Soc., pp. 321–332, MR 0337902
- Wiles, Andrew (2000), “Twenty years of number theory”, Mathematics: frontiers and perspectives, Providence, R.I.: American Mathematical Society, pp. 329–342, ISBN 978-0-8218-2697-3, MR 1754786
- Zagier, Don (1977), “The first 50 million prime numbers” (PDF), Math. Intelligencer (Springer) 0: 7–19, doi:10.1007/BF03039306, MR 643810, オリジナルの2009年3月27日時点におけるアーカイブ。
- Zagier, Don (1981), “Eisenstein series and the Riemann zeta function”, Automorphic forms, representation theory and arithmetic (Bombay, 1979), Tata Inst. Fund. Res. Studies in Math., 10, Tata Inst. Fundamental Res., Bombay, pp. 275–301, MR 633666
外部リンク
- 知恵蔵2013『リーマン予想』 - コトバンク
- Riemann, 鈴木治郎「与えられた数より小さな素数の個数について: Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse : BERNHARD RIEMANN」2012年。 Riemann予想の原論文である Bernhard Riemann Ueber die Anzahl der Primzahlen unter einer gegeben Grosse の日本語訳.訳者:鈴木治郎
- Weisstein, Eric W. "Riemann Hypothesis". mathworld.wolfram.com (英語).
- The Riemann Hypothesis(英語)
- American institute of mathematics, Riemann hypothesis
- Apostol, Tom, Where are the zeros of zeta of s? Poem about the Riemann hypothesis, sung by John Derbyshire.
- Borwein, Peter (PDF), The Riemann Hypothesis, オリジナルの2009年3月27日時点におけるアーカイブ。 (Slides for a lecture)
- Conrad, K. (2010), Consequences of the Riemann hypothesis
- Conrey, J. Brian; Farmer, David W, Equivalences to the Riemann hypothesis, オリジナルの2010年3月16日時点におけるアーカイブ。
- Gourdon, Xavier; Sebah, Pascal (2004), Computation of zeros of the Zeta function (Reviews the GUE hypothesis, provides an extensive bibliography as well).
- Odlyzko, Andrew, Home page including papers on the zeros of the zeta function and tables of the zeros of the zeta function
- Odlyzko, Andrew (2002) (PDF), Zeros of the Riemann zeta function: Conjectures and computations Slides of a talk
- Pegg, Ed (2004), Ten Trillion Zeta Zeros, Math Games website. A discussion of Xavier Gourdon's calculation of the first ten trillion non-trivial zeros
- Pugh, Glen, Java applet for plotting Z(t)
- Rubinstein, Michael, algorithm for generating the zeros, オリジナルの2007年4月27日時点におけるアーカイブ。.
- du Sautoy, Marcus (2006), Prime Numbers Get Hitched, Seed Magazine
- Stein, William A., What is Riemann's hypothesis, オリジナルの2009年1月4日時点におけるアーカイブ。
- de Vries, Andreas (2004), The Graph of the Riemann Zeta function ζ(s), a simple animated Java applet.
- Watkins, Matthew R. (2007-07-18), Proposed proofs of the Riemann Hypothesis
- Zetagrid (2002) A distributed computing project that attempted to disprove Riemann's hypothesis; closed in November 2005
- NHKスペシャル 魔性の難問 リーマン予想・天才たちの闘い - NHK放送史
-
- リーマン予想のページへのリンク