そすう‐ていり【素数定理】
素数定理
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/02/08 21:21 UTC 版)
素数定理(そすうていり、英: Prime number theorem、独: Primzahlsatz)とは自然数の中に素数がどのくらいの「割合」で含まれているかを述べる定理である。整数論において素数が自然数の中にどのように分布しているのかという問題は基本的な関心事である。しかし、分布についての数学的な証明は極めて難しく、まだ解明されていない事柄が多い。この定理は素数の分布の性質についての最も基本的な情報を与える。
歴史
素数定理は、18世紀末にカール・フリードリヒ・ガウスやアドリアン=マリ・ルジャンドルによって予想された(ガウス自身の言によればそれは1792年のガウスが15歳のときである)。予想として公表されたのはルジャンドルの著『数の理論』であったが、ガウスは少年時代にの既に予想を立てていたことはガウスの死後の1863年に彼の全集が出版されるまでは知られておらず、ガウス自身は素数定理については友人エンケに一度だけ手紙(1849年)で触れただけであった[1]。
その後パフヌティ・チェビシェフによる部分的な結果(1850年-1852年頃[2])や、ベルンハルト・リーマンによる新たな解析的方法が発表された[3]が、最終的には1896年にシャルル=ジャン・ド・ラ・ヴァレー・プーサンとジャック・アダマール[4]がそれぞれ独立に証明した。当初与えられた証明はゼータ関数と複素関数論を用いる高度なものであったが、1949年にアトル・セルバーグ[5]とポール・エルデシュ[6]は初等的な証明を与えた。ノーバート・ウィーナーや池原止戈夫らによるタウバー型定理によって、素数定理と「ゼータ関数が Re s = 1 上に零点を持たないこと」との同値性は既に確立されていたので、この複素解析学を用いない初等的な証明は当時大きな驚きをもって迎えられた。
定理の内容
以下、記号「
- Hadamard, Jacques (1896), “Sur la distribution des zéros de la fonction ζ(s) et ses conséquences arithmétiques.”, Bulletin de la Société Mathématique de France (Société Mathématique de France) 24: 199-220
- Erdős, Paul (1949-07-01), “On a new method in elementary number theory which leads to an elementary proof of the prime number theorem,”, Proceedings of the National Academy of Sciences (U.S.A.: National Academy of Sciences) 35 (7): 374-384, doi:10.1073/pnas.35.7.374
- Selberg, Atle (1949-04), “An Elementary Proof of the Prime Number Theorem.”, Annals of Mathematics, Second Series (Mathematics Department, Princeton University) 50 (2): 305-313
- de la Vallée Poussin, Charles-Jean (1896), “Recherches analytiques sur la théorie des nombres premiers.”, Annales de la Société scientifique de Bruxelles (Imprimeur de l'Académie Royale de Belgique) 20 B; 21 B: 183-256, 281-352, 363-397; 351-368 - https://books.google.co.jp/books?id=7e0GAAAAYAAJ
和書:
- 内山三郎:「素数の分布」、宝文館出版、(1970年)。
- ウワディスワフ・ナルキェヴィッチ 著、中嶋眞澄 訳『素数定理の進展』 上、シュプリンガー・ジャパン、2008年6月。ISBN 978-4-431-71086-8。
- ウワディスワフ・ナルキェヴィッチ 著、中嶋眞澄 訳『素数定理の進展』 上、丸善出版、2012年7月17日。ISBN 978-4-621-06315-6。 - ナルキェヴィッチ (2008)の復刊。
- W・ナルキェヴィッチ(著)、中嶋眞澄(訳):『素数定理の進展』下、丸善出版、ISBN 978-4-621-06522-8 (2013年11月25日).
- 松本耕二「第3章 素数定理」『リーマンのゼータ関数』朝倉書店〈開かれた数学 1〉、2005年11月。ISBN 978-4-254-11731-8。
- 本橋洋一「素数の翼に乗って」(PDF)『数学通信』第10巻第1号、東京 : 日本数学会、2005年5月、4-19頁、CRID 1520572358126328192、ISSN 13421387、2024年3月14日閲覧。
- 本橋洋一『解析的整数論』 I ― 素数分布論 ―(第2刷)、朝倉書店〈朝倉数学大系 1〉、2012年11月(原著2009年)。ISBN 978-4-254-11821-6。 - 注釈:第2刷は加筆含む。
- 吉田信夫 著、アップ研伸館 編『複素解析の神秘性 複素数で素数定理を証明しよう!』現代数学社、2011年10月。ISBN 978-4-7687-0416-5。
- A-M.ルジャンドル 著、高瀬正仁 訳『数の理論』海鳴社、2007年12月。ISBN 978-4-87525-245-0。
関連項目
外部リンク
- 『素数定理』 - コトバンク
- Weisstein, Eric W. "Prime Number Theorem". mathworld.wolfram.com (英語).
- Weisstein, Eric W. "Skewes Number". mathworld.wolfram.com (英語).
素数定理
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/03/21 05:53 UTC 版)
18世紀末には、π(x) が x ln x {\displaystyle {\frac {x}{\operatorname {ln} x}}} に漸近近似できること、即ち lim x → ∞ π ( x ) x / ln x = 1 {\displaystyle \lim _{x\to \infty }{\frac {\pi (x)}{x/\operatorname {ln} x}}=1} が成り立つであろうということが、カール・フリードリヒ・ガウスにより予想されていた。1850年頃にパフヌティ・チェビシェフは、この等式の左辺がもし極限を持つならば、それは1でなくてはならないことを示した。その後もこの予想は長らく証明されなかったが、1896年になってジャック・アダマールとシャルル=ジャン・ド・ラ・ヴァレー・プーサン(英語版)により独立に証明され、現在では素数定理と呼ばれている。彼らの証明は、リーマンゼータ関数の性質を用いている。 長い間、解析的方法を用いなければ素数定理を証明することはできないと信じられていたが、1948年頃、アトル・セルバーグとポール・エルデシュは複素解析を用いない素数定理の証明を(ほぼ独立に)発見した。それらの証明では、数論的関数の初等的評価のみを用いていた。
※この「素数定理」の解説は、「素数計数関数」の解説の一部です。
「素数定理」を含む「素数計数関数」の記事については、「素数計数関数」の概要を参照ください。
固有名詞の分類
- 素数定理のページへのリンク