ヘッケ指標
![]() | 原文と比べた結果、この記事には多数の(または内容の大部分に影響ある)誤訳があることが判明しています。情報の利用には注意してください。 |
数論では、ヘッケ指標(Hecke character)はディリクレ指標の一般化であり、エーリッヒ・ヘッケによりディリクレのL-函数よりも大きな L-函数のクラスを構成するために導入された。ヘッケのL-函数はデデキントゼータ函数の自然な設定とリーマンゼータ函数の満たす函数等式に似た函数等式を持つ。
定義
ヘッケ指標は、数体や大域函数体のイデール類群の(擬)指標(Multiplicative character)である。ヘッケ指標は、射影的写像をもつ合成を経由して、主イデール上自明なイデールの擬指標に一意に対応する。
この定義は指標の定義に依存している。指標の定義は書籍の筆者により少し異なっている。0 を含まない複素数(「擬指標とも言う)への準同型として定義されるかもしれないし、C の単位円の群(unit circle in C)(「ユニタリ性」)であるかもしれない。任意のイデール類群の擬指標は、一意的にユニタリ指標にノルムの実数べきをかけた値として書くことができ、2つの定義にさほどの大きな差異はない。
ヘッケ指標 χ の導手(conductor)は、χ が mod m のヘッケ指標となる最大イデアルの m のことである。ここにmod m のヘッケ指標 χ とは、全ての v-adic な成分が 1 + m Ov にあるような有限なイデール群の上の指標と考えたとき、χ が自明な場合を言う。
量指標
ヘッケに遡ると、ヘッケ指標の元となる量指標(Größencharakter、Grössencharakter, Grossencharacterなどと書かれる)の定義は、分数イデアル上の指標を使っていた。数体 K に対し、m = mfm∞ を、有限部分としては K のイデアル mf を持ち、無限部分としては K の実数の座(place)の「形式的な」積として持つ K-モジュラス(modulus)とする。Im で K の分数イデアルの群を素イデアル mf を表し、Pm で主分数イデアル (a) の部分群を表す。ここに a は、その因子の多重度に応じて、各々の m の座で 1 に近く。mf の中の各々の有限の座 v に対し、ordv(a - 1) は、少なくとも mf の中の v の成分と同じ大きさであり、a は m∞ への各々の実埋め込みの下では正である。modulus m を持つ量指標は、Im から 0 でない複素数への群準同型であり、Pm の中のイデアル (a) に対し、その値は、K のすべてのアルキメデス的完備化の乗法群の積から 0 でない複素数への連続写像の a での値に等しい。アルキメデス的完備化の乗法群上では、この準同型の各々の局所成分は、同じ実数成分を持っている。(ここに、K 上の様々なアルキメデス的な座に対応する埋め込みを使い、K のアルキメデス的完備化の積の中へ a を埋め込む。)このようにして、量指標は modulo m とする射類群(ray class group)上で定義される。ここの射類群とは商 Im/Pm である。
厳密に言うと、ヘッケは、総実な生成子を持つような場合の主イデアルの振る舞いについての基本的な事項を作った。従って、上の定義について、彼は全ての実数の座が現れるモジュラスを持つ仕事をしたのみであった。無限部分 m∞ は、現在では無限タイプの考え方に含まれている。
量指標とヘッケ指標の関係
両者は1対1に対応する本質的に同じ概念であるが、イデアルでの定義はイデール的な定義よりも非常に複雑で、ヘッケの定義したことの動機は、(ヘッケのL-函数と呼ばれる)L-函数の構成にあった。[1] ヘッケのL-函数はディリクレのL-函数の考えを、有理数から他の代数体へ拡張したものである。量指標 χ に対し、そのL-函数は、次のディリクレ級数として定義される。
- ヘッケ指標のページへのリンク