ウラムの螺旋
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/02/03 13:31 UTC 版)
ウラムの螺旋もしくは素数螺旋(ウラムのらせん、そすうらせん、言語によってはウラムの布とも)とは、素数の分布をある簡単なルールに従って2次元平面に並べ、可視化したものである。これにより、いくつかの二次多項式が非常に多くの素数を生成する傾向にあることが容易に示される。これは1963年、数学者のスタニスワフ・ウラムによって発見された。彼によれば学会の「長くて非常に退屈な論文」の発表の際に落書きをしていてこれを発見した[1]。その後間もなくして、ウラムはマイロン・スタインやマーク・ウェルズと協力し、ロスアラモス国立研究所のMANIAC IIを使って65,000までの範囲の螺旋を、当時まだ初期の段階にあったコンピュータグラフィックスを使用して描いた[1][2][3]。翌年の3月、マーティン・ガードナーがサイエンティフィック・アメリカンで連載を持っていた数学ゲームに関するコラムでウラムの螺旋について紹介し[1]、そのコラムが掲載された号はウラムの螺旋が表紙を飾った。
サイエンティフィック・アメリカンのコラムについて補足すると[4]、ガードナーは爬虫両棲類学者ローレンス・モンロー・クローバーが1932年、ウラムの発見に先立つこと30年以上前にアメリカ数学会で発表した、素数を多く生成する二次多項式を発見するための素数の2次元配列の研究についても言及している。クローバーの配列はウラムのような螺旋状ではなく、方型というよりは三角形状であった[5]。
構造
ウラムは数字の螺旋を中心の1から始めて、渦巻状に、長方形の格子状に書き下した。
そして素数に印をつけ、次の図を得た。
驚くべきことに、素数は45度の斜線に沿って並ぶ傾向があった。上に示された例に比べれば水平線や垂線はやや目立たないが、やはり明確である。
ウラムの螺旋の構成方法から、仮に奇数を黒、偶数を白と塗り分ければチェスボードのような模様になる。素数は2を除き全て奇数であるから、(2以外の)素数が黒マスにのみ存在するのは自明である。驚くべきは、黒マスの中でも素数の分布が濃いラインと薄いラインに明らかな傾向が見られることである。
より範囲を広げてウラムの螺旋を描いてみても、斜線が浮かび上がることが今までのところ確認されている。こうした模様は、最初の真ん中の数字が1でなくても同様に現れるように思われる(実際、1よりはるかに大きくできる)。このことはつまり、関数
F予想はax2 + bx + cのa、b、cがすべて整数であり、aが正の整数の場合を考えるものである。もし係数が1より大きい公約数を持っているか、もしくは判別式Δ = b2 − 4acが平方数であるならば、この多項式は因数分解できるのでxが0, 1, 2, ...の値をとれば合成数を与える(ただし、xの取り方によっては片方の素因数が1である可能性はある。そのようなxは高々2個存在する)。さらに、a + bとcが両方とも偶数であれば、多項式はすべて偶数となり、したがって合成数である(素数2である可能性はある)。ハーディとリトルウッドはこうした場合を除外すれば、ax2 + bx + c(x=0, 1, 2, ...)からは無限の素数が生成されると予想した。これはより古いブニャコフスキー予想の特殊な場合であり、現在まで証明されていない。ハーディとリトルウッドはさらに進んで、ax2 + bx + cから生成される、n以下の素数の個数P(n)は次の公式で近似できると予想した。
クローバーが1932年の論文で言及したのは三角形状で、n行目が(n − 1)2 + 1からn2までの数字で構成されている。ウラムの螺旋と同じように、二次多項式によって生成される数は直線をなす。垂線上の数字はk2 − k + Mの形で書くことができる。素数の密度が高い垂線や斜線は図から明らかである。
正三角ウラムの螺旋
正三角形上に自然数を並べたもの。
六角ウラムの螺旋
正六角形上に自然数を並べたもの。
サックスの螺旋
ロバート・サックスは1994年にウラムの螺旋の亜種を考案した。ウラムの螺旋が四角の螺旋状だったのに対して、サックスの螺旋はアルキメデスの螺旋状に非負の整数を並べ、1周ごとに平方数が来るようにする(ウラムの螺旋では1周につき2つの平方数が含まれる)。オイラーの素数生成多項式x2 − x + 41はxの値が0, 1, 2, ...と動くとき、1本のカーブとして現れる。曲線は図の左半分側にて、漸近的に水平線に近づいていく(ウラムの螺旋では、オイラーの素数生成多項式による数字は2本の斜線を形作る。上半分はxが偶数の場合、下半分はxが奇数の場合に相当する)。