核酸アナログ
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/02/27 15:09 UTC 版)
天然のRNAやDNAの製剤としての問題点を改善するために様々な核酸アナログが報告されている。核酸分子のあらゆる部位が化学修飾の対象となりえる。核酸塩基部位に適切な化学修飾を施すと相補的な塩基配列を有する核酸との二本鎖形成や塩基対認識能を向上させることが可能である。また、糖部位を化学修飾することで二本鎖形成能を高め、ヌクレアーゼに対する耐性を獲得することが可能である。しかしながら核酸塩基部位や糖部位への化学修飾は多くの場合、多段階の合成ステップを必要とし、一般に全行程収率が低いという問題がある。また、糖部修飾によって獲得されるヌクレアーゼ耐性も不十分であることが多い。特に、オリゴヌクレオチドの全ての糖部を修飾すると核酸医薬としての重要な生理活性を失うことが多いので注意が必要である。例えば、全ての2'-位をメトキシ基やフッ素原子で置換するとRNase H活性やRNAi活性が失われる。リボース環の2'-位と4'-位が架橋されたLNAも同様である。これらの生理活性を保つためには天然型と修飾型のキメラ分子を用いることが多い。例えばsiRNAではプリン塩基には修飾を加えずピリミジン塩基の2'-OHを2'-Fに修飾を加えるという方法を用いることがある。リン酸部位に化学修飾を施す場合、合成の出発原料として、安価な天然のヌクレオシドを容易に入手できるというメリットがある。中でも天然型オリゴヌクレオチドの2つの非架橋酸素原子の1つを別の原子や置換基に変換したリン原子修飾核酸は置換基の種類によって、脂溶性や水溶性などの性質や相補的な核酸との二本鎖形成能を制御でき、かつ十分なヌクレアーゼ耐性をほぼ確実に獲得できる。 LNA(Locked Nucleic Acid) LNA(またはBNA(英語版)) は小比賀、今西およびWengelらにより独立に合成された核酸アナログであり、RNAの2'位の酸素原子と4'位の炭素原子をメチレンで架橋し、リボースの配座をC3'-endo型に固定したものである。これによりA型らせん構造が固定化され、DNA、RNAと極めて安定な二本鎖を形成する。ミスマッチによる熱融解温度(Tm値)の低下がDNAより大きいため配列特異性が高いといゆ特徴がある。またホスホロチオエート以上のヌクレアーゼ耐性をもつため、医薬品への応用が期待されている。高い熱安定性を有するため、標的配列が二本鎖や強固な高次構造を形成している場合でも、相補鎖形成が可能であるという利点がある。一般には毒性が低いと言われているが一部で肝毒性が指摘されている。 様々な応用例が報告されているが、ノーザンブロット、In situ ハイブリダイゼーション、マイクロアレイなどへの応用では、感度の高さから微量なRNAの検出に非常に有効である。特に標的配列が短い場合も十分な結合力を有するため、miRNAの研究では必須のツールとなっている。またLNAの組み込み数を調節することで異なるプローブ間でTm値を揃え定量性向上させることができる。アンチセンス核酸としても有用でありmRNAの翻訳抑制、やmiRNAの機能阻害などの例がある。通常、LNAとDNAが混在したキメラで用いられ、DNAとほぼ同様に様々な酵素反応に用いることができる。但しRNase Hによる切断を行う場合はDNAが続いた領域が必要となる。siRNAに組み込めば高い特異性とヌクレアーゼ体制により、効率がよく、off-target効果の少ないノックダウンが可能である。その他、逆転写PCRプライマーや各種SNP識別法などへの応用が行われている。LNAを用いたアンチセンス核酸の配列決定にはLNAの組み込む数と位置が問題になる。LNA同士は非常に強固なため、二次構造やダイマーの形成に注意が必要となる。LNAによるTm値の向上は配列や位置に依存する。LNA数を増すにつれ1塩基あたりのTm値の向上は小さいものになるため、通常は適当な間隔を空けてLNAを導入する。LNAを増やしすぎると部分的にマッチする配列とも結合してしまうため、適切なTm値になるように設計する。ヌクレアーゼ耐性は高いがRNase H活性はないため、RNase H依存性のmRNAの分解をする場合はgap portionを非修飾DNAとしたgapmer type ASOとしてデザインすることが多い。 ホスホロチオエート(Phosphorothioate、PS) ホスホロチオエート(Phosphorothioate、PS)核酸はリン酸ジエステル結合部分の酸素原子を1つ硫黄原子に置き換えたものでヌクレアーゼ耐性がある。標的配列をmRNAの翻訳開始部位付近などに設定し、立体障害やRNase Hによる切断による翻訳抑制に用いることができる。問題点としては結合が天然の核酸よりも弱いこと、蛋白質との非特異的相互作用による細胞毒性が高い。リン原子が不斉になるため立体異性体の混合物になるということがあげられる。リン原子の立体配置によって二本鎖RNAの熱安定性やヌクレアーゼ耐性が大きく異なることが知られている。東京理科大学の和田猛らはリン原子の絶対的立体配置が完全に制御されたホスホロチオエートDNAおよびRNAの実用的な合成法(オキサザホスホリジン法)を開発した。その後、オキサザホスホリジン法は、ホスホロチオエート以外のリン酸原子修飾核酸の立体選択的合成法へ応用されている。 モルフォリノオリゴ モルフォリノホスホロジアミデートはアンチセンスとしてよく用いられている核酸アナログであり、リボースの代わりにモルフォリン環、リン酸ジエステルの代わりに電荷のないホスホロジアミデート結合をもつ。RNase H活性はないが、天然のDNA、RNAより結合が強くかつ特異性が高い。他に細胞毒性が低い、水溶性が高いという優れた特徴があり、細胞への導入法も確立している。主に翻訳阻害、pre-mRNAのスプライシング阻害、miRNAのノックダウンや成熟化阻害に用いられている。血漿蛋白質との結合性が低いため速やかに体内から消失する。 ボラノホスフェート ボラノホスフェートはリン酸の酸素原子をボランに置き換えた核酸アナログである。高いヌクレアーゼ耐性を持ち、天然の核酸より脂溶性が高く毒性も低い。RNase Hや各種ポリメラーゼなどによる反応も妨げない。ボラノホスフェート化されたsiRNAは天然よりも高いRNAi活性を持つことが報告されている。 2'-O-メチル化RNA(2'-OMe) 2'-O-メチル化RNAは天然にも存在する修飾核酸である。C3'-endo型が優性で熱力学的安定性が高く、ヌクレアーゼ耐性は高いがRNase H活性はないため、RNase H依存性のmRNAの分解をする場合はgap portionを非修飾DNAとしたgapmer type ASOとしてデザインすることが多い。 2'-O-メトキシエチル化RNA(2'-MOE) 2'-O-メトキシエチル化RNAはミポメルセンのwing portionやヌシネルセンの全配列で用いられる核酸アナログである。結合力が強い核酸アナログとして知られる。ヌクレアーゼ耐性は高いがRNase H活性はないため、RNase H依存性のmRNAの分解をする場合はgap portionを非修飾DNAとしたgapmer type ASOとしてデザインすることが多い。IONIS社が開発した製品で利用される。
※この「核酸アナログ」の解説は、「核酸医薬」の解説の一部です。
「核酸アナログ」を含む「核酸医薬」の記事については、「核酸医薬」の概要を参照ください。
- 核酸アナログのページへのリンク