近接信管とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > デジタル大辞泉 > 近接信管の意味・解説 

きんせつ‐しんかん〔‐シンクワン〕【近接信管】

読み方:きんせつしんかん

目標物近づく起爆するように装置した信管


【近接信管】(きんせつしんかん)

砲弾等が目標命中しなくても、最接近時に起爆する事でダメージ与える事を目的とした信管

概念

近接信管の概念1930年頃には既にいくつか提案されており、ドイツでは既に開発始まっていたといわれているが、アメリカではあまりにも複雑すぎるとしてほとんど省みられることがなかった。
これに関する特許多数申請されていたが、概念のみで実用化へのアイデア含まれていなかったことも関心集めにくかった原因とされている。
しかし、1940年代入り第二次世界大戦激化するに伴い航空機進化高射砲性能追いついていけないことが明らかになった。
日々高速化して行く航空機対し従来時限信管着発信管では、もはやこれらを捉えることが困難となっていた。

開発に至る経緯

アメリカでようやく近接信管の開発はじめられた頃、イギリスではロケット弾爆弾用の近接信管が既に実用化されていた。
しかし、20,000Gもの加速度が加わる砲弾には応用できないとされ、それ以上研究進んでいなかった。

航空機進化による脅威を最も多く受けたのは海軍である。
それまで航空機による対艦攻撃など取るに足りない思われていたが、わずか数年航空機進化艦艇天敵となるまでに深刻さ増していた。
そのためアメリカ海軍は、主要対空火器であった5インチ砲に用いる近接信管の開発に非常に強い興味示した。(後にイギリス海軍開発に加わることとなった
初期段階研究では電気式音響式、光学式電波式などの様々な形式取り上げられ最終的に信頼性生産性の面から光学式電波式に絞って研究進められた。
そして実用化には光学式の方が容易と判断されたため、まずは光学式開発重点がおかれた。
光学式夜間悪天候に弱いという弱点認識されていたため、光学式開発終了すると、続いて電波式の開発全力注がれた。
電波と言っても更に様々な形式細分化することができたが、ドップラーレーダー利用した方法が最も有効であると評価された。

実用化

砲弾撃ち出されると、信管作動し電波発生させる
信管目標反射され電波自身受信する
砲弾目標に近づいている間はドップラー現象により波長小さく高周波に)なるが、逆に遠ざかるうになる波長大きく低周波に)なる。
すなわち、受信する電波の波長高周波から低周波変化する瞬間がその砲弾目標に最も接近した瞬間である。
電波式近接信管は、この低周波捉えることにより起爆し、最も近く目標対し最も近く砲弾炸裂させることを可能とするものである

開発は困難を極めた最初に開発されたMark.32は大きすぎるだけでなく大量生産するには向いていなかった。
しかし、のべ1000人もの研究者精密機器とも言うべきこの信管開発携わり1941年9月までに世界で初め信頼性生産性備えた電波式近接信管(いわゆるVT信管)の開発成功した
直接命中せずとも至近砲弾炸裂させるこの画期的な信管により、撃墜率は3倍になった

その後の進化

この電波式近接信管は、最高軍事機密として保護されその後改良続けられた。
電波斜め前方に発することで、起爆時のタイムラグ克服したロケット弾ミサイル野砲などにも応用された。
また、逆に自らが敵の電波式近接信管の脅威晒され場合想定して、これを妨害する方法研究された。
近年では、電波式に替わってより精度の高いレーザー式の近接信管が開発され各種対空ミサイル採用されている。

関連マリアナの七面鳥撃ち


近接信管

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/04/01 22:04 UTC 版)

VT信管の構造(MARK53型信管)

近接信管(きんせつしんかん 英語: Proximity fuze)は、砲弾が目標物に命中しなくとも一定の近傍範囲内に達すれば起爆できる信管をいう。太平洋戦争期間中にアメリカ海軍の艦対空砲弾頭信管に採用され、命中率を飛躍的に向上させる効果が確認されたことにより注目された。目標検知方式は電波式以外に光学式、音響式、磁気検知式が開発され、魚雷等の信管にも応用されている。

最大の長所は目標に直撃しなくてもその近くで爆発することにより、砲弾を炸裂させ目標物に対しダメージを与えることができる点にある。二番目の長所は砲身の摩耗、装薬ロットのバラツキ、気温や気圧、降雨の影響による砲弾の初速や弾道バラツキに影響されないで信管が作動する点にある。時限信管は砲弾側のバラツキに対しては対応できない。三番目の長所は時限の設定作業が不要になる事で発射速度の向上に寄与した。これは従来の攻撃機よりも高速、短時間で接近する特攻機に有効であった。

現在の正式な呼称は "Proximity fuze"。太平洋戦争当時のアメリカ軍の情報秘匿通称から取って「VT信管」(Variable-Time fuze) とも呼ばれることがある[1]。略意については、「兵器局VセクションのT計画で開発された信管」との説もある[2]。またこの信管を「マジック・ヒューズ」と呼称していたこともある。

歴史

電波を使用して命中率を高めようとする概念はアメリカ合衆国特許第 1,757,288号にあるように1920年代から既に試みられていた。 軍艦の高角砲の砲弾に近接信管のついたものを使用することによって、それまでの時限式の信管の砲弾に比べて数倍の防空能力を得ることができた。

ジョンズ・ホプキンス大学応用物理学研究所のマール・トューヴ博士主導のもと、アメリカ海軍が協力し1942年1月に試作品が完成した[3][出典無効]1943年1月、ガダルカナル島の近くで行動中の軽巡洋艦ヘレナ」が九九式艦上爆撃機を撃墜したのがVT信管による最初の戦果である[4][5][出典無効]マリアナ沖海戦でも使用され、日本海軍艦載機に大きな損害を与えた。

マリアナ沖海戦で日本海軍が一方的敗北をした理由の1つとして、この近接信管により日本機が多数撃墜されたからかのような説が散見されるが、実際には優秀なレーダー網と航空管制による効果的な迎撃と航空機の性能差などのため、日本機は艦隊上空に到達する以前に大半が撃墜されてしまっており、対空砲火で撃墜された割合は被撃墜378機のうち19機と少ない。またマリアナ沖海戦時点では近接信管の大量な製造が間に合っておらず、アメリカ艦隊が発射した全高角砲弾のうち近接信管弾が占める割合は20%程度であった。

従来の信管は時限式で、目標の高度や速度などから予測される接触未来位置までの到達時間をあらかじめセットして発射し、一定時間後に爆発させる仕組みだった。最初期の近接信管は、目標から反射してきた電波(VHF)により信管内の発振回路が影響を受ける現象を利用しており、敵機が弾丸の15m以内を通るだけで爆発した。この信管によって、以前よりも命中率が大きく向上したとされる(英語版en:Proximity fuzeでは7倍となっている)。

実戦配備にまでは至らなかったものの、ドイツ日本でも近接信管を備えた対空兵器の研究はされていた[6][1]

構造

高周波発振機がアンテナに接続されており、そこから放出された電波が速度差を持った金属物体に反射するとドップラー効果により周波数が変移した電波が戻ってきて、発振機のなかで混ざり合った周波数の差がビートとして検出される。これを増幅し出力が一定以上になるとサイラトロンが導通し、雷管に通電して起爆する[7][3][出典無効]。開発当初は真空管を用いており、発射の衝撃に耐えられるように樹脂などで周囲を固めると共に、中の部品にも特別なものを使っていた[7][8]。そのためVTはVacuum tube(真空管)のことだと説明されていることもある。VT信管が出現する前は、対空砲弾は目標敵機周辺で砲弾が炸裂するよう距離にあわせて時限信管を使っていたが、時間設定精度が悪いうえ距離も刻々変わるため、目標の遥か手前や遥か後方で炸裂することも多く、タイミングの調定が大変困難だった。

使用周波数は70MHz帯であった。サブミニチュア真空管3本の回路である[7]

  • 1本は発信器兼ドップラー効果の検波器。
  • 1本はCRの高域濾波器(検出パターンの補正。作動の時間遅れと弾片の散布パターンの補正)。
  • 1本はサイラトロン(熱陰極格子制御放電管)で、ドップラーの検出レベルがある値になると放電して起爆装置を起動し、発火する。

使用弾の種類に応じて感度を調節するため、サイラトロンのバイアス回路中に可変抵抗器(AVC回路)があった。AVC回路は以下のノイズから信管を保護した。

  • 海面反射のノイズ。開発初期段階で海面に向けて低い角度で発射した場合に海面反射波と目標反射波の区別が付かない事が計算され、初期のMark32信管にて1942年秋には悪影響が実証された。1943年にAVC回路の設計が開始されて海面ノイズ影響を低減させる事に成功した。
  • 降雨のノイズ。降雨中のテストで信管が正常に稼働しないことが1943年後期に確認された。雨の多いパナマにて対策テストを行った結果AVC回路が降雨に対しても有効である事が判明した。

地上での対空砲火にてVT信管が目標を検知せずに地上に落下して不発弾となった場合、敵に信管を回収される可能性が有る。そこで砲弾が一定のスピンをした後に自爆する回路も採用された。低空飛行するV1ロケットを迎撃する際は低い角度で発射した砲弾が設定のスピン数に達する前に地面に落下する問題が見つかり急遽設定を調整した信管を米本土から緊急空輸した。

弾の発射直後に近接信管が発射母体自身を検知して炸裂する自傷事故を防ぐため、近接信管に組み込まれる安全装置には、次のものがある。

  • 高射砲弾に装着するものはガラスアンプルに入った電解液が発射の衝撃で割れて数分程度の電池が作動する。また遠心力にて通電する水銀スイッチも導入された。
  • 爆弾またはロケット弾用は、プロペラ駆動の発電機が作動する。プロペラがある回数回転したのちに近接信管が起爆回路に接続される。

ロケットの全長約2mは70MHzの電波の約半波長であり、ダブレットアンテナを構成する。

現代の近接信管は半導体の使用により、真空管時代より飛躍的に信頼性が高まった。また、目標物との感応距離を様々に設定できるタイプもある。

地上砲撃への応用

地上砲撃においての榴弾砲弾の作動原理は、砲弾内の炸薬爆発によって破裂する砲弾金属破片が周囲数十mに高速飛散することで殺傷効果を及ぼすというものだが、在来の着発信管(命中衝撃で炸薬に点火するもの)榴弾は砲弾断片が着弾地表面から半球状に飛散するため、塹壕(地面に掘った溝型陣地)内の敵兵に対する殺傷効果が激減するという欠点があった。

近接信管を装着した榴弾砲弾は高度50m程で地表面を検知して空中炸裂するために、塹壕内の敵兵にも頭上から弾片を注いで高い殺傷効果を発揮する。これを曳火射撃といい、用語としては火道式時限信管の時代から使われているものである。この技術は化学兵器を充填した榴弾砲弾を最適高度で破裂させて化学兵器を散布するのにも応用される。

近接信管が秘密兵器だった時代には、敵に不発弾の信管を回収される危険があったため、対地攻撃での使用は避けられていた。初めて実戦で使用されたのは、バルジの戦いにおいてであった。ドイツ軍捕虜は新兵器を地磁気に反応する「磁気信管」と呼んでいた。

日本軍は終戦までアメリカ軍が近接信管を実用化したことには気が付かなかった[9]

その他

同時期日本に対して使用された原子爆弾リトルボーイファットマンにも、近接信管の一種である電波高度計による起爆装置が実装されており、実際にそれで起爆した。

検知原理は当時のものと異なるが、近くを通過するだけで爆発するというコンセプトは、目標に直撃しなくても爆散する破片だけで相手に損害を与えられるため、現在でも砲弾だけでなく対空ミサイルにも使用されている。成形炸薬弾の一種で複数の電気信管を備えたり、弾体の回転位置を検出して最適のタイミングで指向性爆薬を起爆する事により、99式空対空誘導弾のように破片が目標の方向へ飛ぶように指向性をもって爆発するものや、R-77などのように電波ではなくレーザーの反射光を用いるものも開発されている。

多数の電子部品を組み込んだVT信管を大量生産するので品質管理は重要であった。1945年7月頃に信管が作動しない不良ロット問題が発覚した。海軍は全ての艦艇の信管を空輸してでも別ロット品に交換する事を決めた。不良の原因は発火用コンデンサーの封止材が高温多湿の船倉で劣化した為であった。さらに部品ロットを遡ると特定の工場から納品されたコンデンサーに目星がついた。封止材で作業者の手がかぶれたので無断で別素材に変更していた事が判明してからはコンデンサーは毎ロットを高温多湿の加速試験にかけることになった。


レーザー近接信管

レーザーを照射して反射したレーザー光を検出して起爆する。ステルス機のような電波を吸収したり特定の方向へ反射するような機体に対しても効果がある。

近接信管を扱った作品

映像作品

脚注

出典

  1. ^ a b 白石一美「VT信管考」『宮崎大学教育文化学部紀要. 人文科学』第20巻、宮崎大学教育文化学部、2009年3月、41-52頁、hdl:10458/1995ISSN 1345-4005CRID 1050007314766237696 
  2. ^ イアン・V・ホッグ(著)、陸上自衛隊高射学校(訳)『対空戦』原書房、1982年5月1日。ISBN 978-4562012466 
  3. ^ a b 近接信管
  4. ^ Radio Proximity Fuzes
  5. ^ VT信管
  6. ^ 誘導ミサイル「噴竜」③
  7. ^ a b c 貞重浩一「真空管時代のリーディングエッジ電子機器」『映像情報メディア学会誌』第55巻第1号、映像情報メディア学会、2001年、70-75頁、doi:10.3169/itej.55.70ISSN 13426907CRID 1390001205098247424 
  8. ^ 爆発物と起爆装置(8)信管よもやま話
  9. ^ ドキュメンタリー『ドキュメント太平洋戦争』シリーズ 第3回 『エレクトロニクスが戦を制す~マリアナ・サイパン~』(NHK

参考文献

関連項目

外部リンク



近接信管

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/05/04 06:48 UTC 版)

ミサイル」の記事における「近接信管」の解説

信管から電磁波発し、その反射波一定上の強さになった時点動作する信管である。信管から一定の距離以内目標侵入した時点動作する最初期から現在まで最も一般的な近接信管は電波利用する物であり、信管から発する電波反射波一定上の強度になると動作する最近ではレーザー光線利用する近接信管も開発されている。

※この「近接信管」の解説は、「ミサイル」の解説の一部です。
「近接信管」を含む「ミサイル」の記事については、「ミサイル」の概要を参照ください。

ウィキペディア小見出し辞書の「近接信管」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ

「近接信管」の例文・使い方・用例・文例

Weblio日本語例文用例辞書はプログラムで機械的に例文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「近接信管」の関連用語

近接信管のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



近接信管のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
デジタル大辞泉デジタル大辞泉
(C)Shogakukan Inc.
株式会社 小学館
航空軍事用語辞典++航空軍事用語辞典++
この記事はMASDF 航空軍事用語辞典++の記事を転載しております。
MASDFでは航空及び軍事についての様々なコンテンツをご覧頂けます。
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの近接信管 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaのミサイル (改訂履歴)、ドップラー・レーダー (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。
Tanaka Corpusのコンテンツは、特に明示されている場合を除いて、次のライセンスに従います:
 Creative Commons Attribution (CC-BY) 2.0 France.
この対訳データはCreative Commons Attribution 3.0 Unportedでライセンスされています。
浜島書店 Catch a Wave
Copyright © 1995-2025 Hamajima Shoten, Publishers. All rights reserved.
株式会社ベネッセコーポレーション株式会社ベネッセコーポレーション
Copyright © Benesse Holdings, Inc. All rights reserved.
研究社研究社
Copyright (c) 1995-2025 Kenkyusha Co., Ltd. All rights reserved.
日本語WordNet日本語WordNet
日本語ワードネット1.1版 (C) 情報通信研究機構, 2009-2010 License All rights reserved.
WordNet 3.0 Copyright 2006 by Princeton University. All rights reserved. License
日外アソシエーツ株式会社日外アソシエーツ株式会社
Copyright (C) 1994- Nichigai Associates, Inc., All rights reserved.
「斎藤和英大辞典」斎藤秀三郎著、日外アソシエーツ辞書編集部編
EDRDGEDRDG
This page uses the JMdict dictionary files. These files are the property of the Electronic Dictionary Research and Development Group, and are used in conformance with the Group's licence.

©2025 GRAS Group, Inc.RSS