点竄術
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/07/14 06:57 UTC 版)
関の最大の業績は、天元術を革新して傍書法・点竄術を確立したことである。これは記号法の改良と理論の前進の双方を含み、後に和算で高度な数学が展開するための基礎を提供した。 天元術は中国で発達した代数的解法である。求める数を未知数(天元の一と呼ぶ)とし、演算を施して方程式を立てる。問題を1元方程式に帰着できれば、次数に拘わらず算木によるホーナー法で近似的に解けた。しかし明代に入ると中国では天元術は衰え、もっぱら李氏朝鮮で継承されてゆく。朝鮮での発展や日本への流入の過程は今日でも不明な点が多い。日本では17世紀に入ってから、主に京阪の和算家の橋本正数・沢口一之らによって熱心に研究された。沢口の『古今算法記』(寛文10年、1670年)は、天元術の学習がほぼ完了したことを示している。 天元術には多変数の高次方程式を扱えない欠点があった。これは未知数を記号ではなく算木を置く場所で表現しているからで、例えば (1 3 4) の配置は1変数の多項式 1 + 3 x + 4 x 2 {\displaystyle 1+3x+4x^{2}} または多変数の1次式 x + 3 y + 4 z {\displaystyle x+3y+4z} のいずれかを表す。したがって2個目以降の未知数を文章による議論で消去してから、天元術を用いらねばならなかった。 『古今算法記』巻末の15問の未解決問題(遺題)はまさに多変数の方程式を必要とした。関は『発微算法』(延宝2年、1674年)でそれらすべての解を与えている。それは傍書法、すなわち算木による数ではなく紙の上の文字によって算式を論じる代数筆算を用い、2個目以降の未知数を文字で表して多変数の方程式を表現し、それを点竄術で処理して求めた。 ただし『発微算法』には変数を消去した後の1元方程式が書かれているだけで(それすらも詳細を端折った解答もあった)、その背景にある傍書法は一切表に現れていない。加えて初期の版では若干の誤りがあったため、正当性に疑いを持つ者も現れた。例えば佐治一平は15の回答のうち12が誤りだと主張した(実際には佐治の指摘のほとんどは的外れだった)。また佐治の師にあたる田中由真は『算法明解』(延宝7年、1679年)で、別の解答を関とは独立に発明した点竄術・傍書法を用いて与えた。 これに対して建部賢弘が『発微算法演段諺解』(貞享2年、1685年)で点竄術とそれを用いた解法の詳細を公開し、併せて若干の誤りを(場合によっては注記せずに)訂正している。さらに『解伏題之法』(天和3年、1683年)では終結式を用いた消去の一般的な理論を示し、加えて終結式を表現するために行列式に相当するものを導入した。ただし関は3次・4次の行列式は正しい表示を与えているが、5次については符号の誤りがあり、常に0になってしまう。やや後の1710年以前に完成した『大成算経』(建部賢明・建部賢弘との共著)で、第1列についての余因子展開を一般の行列について正しく与えている。 類似の結果は大阪の井関知辰による『算法発揮』(元禄3年、1690年)にも見られる。また、田中の『算学紛解』(1690年?)にもその萌芽と思しき消去方法がみられる。『解伏題之法』も『大成算経』も公刊されていないので、これらの研究は独自になされたと思われる。関と京阪の和算家との交流には不明な点が多い。また『大成算経』の存在にもかかわらず、後の関流の有力な和算家たちが『解伏題之法』を訂正して正しい展開式を得る研究を続けていて、この理由も今のところ不明である。 なおゴットフリート・ライプニッツが行列式を導入したのは関と同じ1683年ころだが、『解伏題之法』に比較して一般性に劣る。一般の行列式の公式や終結式の理論が発見されるのは18世紀の中ごろだった。先立って楊輝(中国、1238年? - 1298年)は『詳解九章算術』で、ジェロラモ・カルダーノは『偉大なる術』(Ars magna de Rebus Algebraicis, 1580年)で、数字係数の二元一次連立方程式の解を行列式と同様の計算式で与えている。 この一連の研究により、数学の問題は多元の代数方程式に表現できれば、原理的には解けることになった。また中国数学以来の伝統で、幾何の問題はピタゴラスの定理などを用い機械的に代数に落として処理していたので、これで実に広範な問題が原理的には解けるようになった。 ただしこの解法を実際に実行するのは多くの場合、計算量が膨大で現実的ではない。そのため『発微算法』でも方程式のみを求めていて、数値解の計算には進まなかった。ある問題は最終的に得られる方程式の次数が1458次にもなってしまい、方程式を具体的に書き下すことすらできなかった。しかし以後、連立高次方程式に帰着される問題は、和算の中心的課題ではなくなった。 また数値解析で数値解を求めるには、実数根の定性的な性質(存在範囲・重根・個数)を解明し、効率的なアルゴリズムを確立しなけらばならない。関はホーナー法の収束を改善するため、ある精度から先は高次の項を省略する、ニュートン法と同値の方法を提案した。また重根の存在条件を示した。これは元の方程式とその導多項式が共通解を持つための条件にほかならず、先の消去の理論の応用である。
※この「点竄術」の解説は、「関孝和」の解説の一部です。
「点竄術」を含む「関孝和」の記事については、「関孝和」の概要を参照ください。
「点竄術」の例文・使い方・用例・文例
点竄術と同じ種類の言葉
- 点竄術のページへのリンク