調律体系
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/04/27 20:33 UTC 版)
詳細は「調律」および「音律」を参照 5限界調律(英語版)は純正律の最も一般的な形式であり、基本周波数の有理数倍音を用いた調律体系である。これは1619年に書かれたヨハネス・ケプラーの著書「宇宙の調和(英語版)」にて惑星の運動と関連して示された音階の一つである。同じ音階が1721年にスコットランドの数学者兼音楽理論家のアレクサンダー・マルコムにより、著書「Treatise of Musick: Speculative, Practical and Historical」において移調形式で与えられ、20世紀には音楽理論家のJose Wuerschmidtにより与えられた。この純正律の形式は北インドの音楽で使用されている。アメリカ合衆国の作曲家テリー・ライリーもまた、自著「Harp of New Albion」において逆形式の使用を行っている。純正律は和声進行がほとんどもしくはまったくない場合に優れた結果を与える。人声と他の楽器は常に純正音程へ引き寄せられる。しかし、2つの異なる全音の音程 (9:8と10:9) が与えられることで、純正律に調律された鍵盤楽器では移調ができなくなる。比率による音階の音の周波数は、主音の周波数に対し比を乗算を行うことで求められる。例として、主音A4(中央のCの上のA)を周波数440Hzとすると、純正に調律された五度 (E5)の周波数は440×(3:2) = 660Hzとなる。 半音比率音程音高間隔01:1 同度 480 0 116:15 短二度 512 16:15 29:8 長二度 540 135:128 36:5 短三度 576 16:15 45:4 長三度 600 25:24 54:3 完全四度 640 16:15 645:32 増四度 675 135:128 73:2 完全五度 720 16:15 88:5 短六度 768 16:15 95:3 長六度 800 25:24 109:5 短七度 864 27:25 1115:8 長七度 900 25:24 122:1 八度 960 16:15 ピタゴラス音律は完全協和音である完全八度、完全五度、完全四度のみで作られる調律である。長三度は三度ではなくditone、つまり文字通りには「二全音」として考えられていて、その音程は(9:8)2 = 81:64である。 全音は2つの完全五度から導かれる(3:2)2/2 = 9:8。 純正な長三度の比率5:4と短三度の比率6:5に対し、ピタゴラス音律では81:64と32:27となり、シントニックコンマすなわち81:80の差がある。Carl Dahlhaus (1990, p.187)によれば、「従属的な三度はピタゴラス音律に従い、独立した三度は倍音に基づく音程にむかう」。 西洋の伝統的音楽は一般に純正律で演奏することはできず、体系的に調整された音律を必要とする。調整は、不規則なウェル・テンペラメント、レギュラーテンペラメント、さまざまな平均律や正則中全音律などが用いられる。しかし、どの場合においても中全音律の基本的特徴を必要とする。例として、ii度音の平方根をドミナント上の五度に調律した場合、主音との音程差は9:8に等しくなる。また、短三度(6:5)を4:3サブドミナント音度の下においた場合、主音からの音程差は10:9に等しい。中全音律は9:8と10:9の間の相違を減らしている。すなわち、これら2つの比、(9:8)/(10:9) = 81:80はユニゾンとして扱われている。音程差となる81:80はシントニックコンマもしくはDidymusのコンマと呼ばれ、中全音律において重要なコンマとなっている。 平均律ではオクターヴは12の等しい半音階に分かれており、それぞれの半音階はその比が2の12乗根となっている。よって、半音階を12個上がることによりちょうど1オクターヴ上昇する。ギターなど、フレットを有する楽器では平均律が有用である。なぜならフレットが弦を等しく横断するからである。ヨーロッパの音楽の伝統において、平均律は鍵盤などの他の楽器よりも早く、リュートやギターを用いた音楽のために使用された。歴史の圧力により、12平均律は現代において西洋、そして非西洋の大部分の地域において支配的な音調体系となっている。 様々な等しい音程を使用して、平均律音階や楽器が作られてきた。19平均律は16世紀にギヨーム・コストレイ (英語版)により初めて提案、使用されたもので、19の等間隔なステップを用いる。19平均律は通常の12平均律よりも長三度や短三度においてより誤差が小さくより協和する。24個の等間隔なステップを用いる24平均律はアラブ音楽の音楽教育や音楽表記において広く用いられている。しかし、理論と実践においては、平均律が無理数の比率で表されるにも関わらず、中東音楽の音調は有理数の比率で表される。平均調律が行われた四分音の近似音がアラブの音調体系には全く見られ無い一方で、3つの四分音の近似音、もしくは中立二度(英語版)は頻繁に現れる。しかし、これらの中立二度はマカームや地理に依存してその比率に僅かな幅がある。実際、中東の音楽歴史家であるハビーブ・ハサン・トゥーマー(英語版)は、「この音楽的なステップの偏り幅がアラブ音楽特有の香りに決定的な働きをする。オクターヴを24の等しい四分音に分割することは、この音楽文化の最も特徴的な要素の一つを放棄するだろう」と記している。 以下のグラフは平均律が和声をどの程度正確に近似しているかを示している。[註: 横軸上の数字は分割する平均律の値を表す。(例:"12"は12平均律音階を表す)] 音周波数 (Hz)前の音との周波数の差周波数の対数log2 f前の音との周波数の対数の差A2 110.00 N/A 6.781 N/A A♯2 116.54 6.54 6.864 0.0833 (or 1/12) B2 123.47 6.93 6.948 0.0833 C3 130.81 7.34 7.031 0.0833 C♯3 138.59 7.78 7.115 0.0833 D3 146.83 8.24 7.198 0.0833 D♯3 155.56 8.73 7.281 0.0833 E3 164.81 9.25 7.365 0.0833 F3 174.61 9.80 7.448 0.0833 F♯3 185.00 10.39 7.531 0.0833 G3 196.00 11.00 7.615 0.0833 G♯3 207.65 11.65 7.698 0.0833 A3 220.00 12.35 7.781 0.0833 以下に純正律と平均律の違いを示したOgg Vorbisファイルを挙げる。違いを理解するには、以下のファイルを何回も聞く必要があるかもしれない。 2つの正弦波の連続的な演奏 – このサンプルは550Hz(純正律音階のC♯)、続いて554.37Hz(平均律音階のC♯)を演奏している。 同じ2音をA440のペダル音上で – このサンプルはダイアード(英語版)から成り立っている。下の音はA (各々の音階にて440Hz)、上の音はC♯であり、前者は平均律音階における音、後者は純正律音階における音である。うなりの違いにより前者の例よりも違いを容易に判別可能である。
※この「調律体系」の解説は、「音楽と数学」の解説の一部です。
「調律体系」を含む「音楽と数学」の記事については、「音楽と数学」の概要を参照ください。
- 調律体系のページへのリンク