倍音
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/12/16 17:03 UTC 版)
![]() |
この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。(2012年3月)
|


倍音(ばいおん、独: Oberton、英: overtone[1]、harmonic sound[1]、harmonic overtone、harmonics)とは、楽音の音高とされる周波数に対し、2以上の整数倍の周波数を持つ音の成分。1倍の音、すなわち楽音の音高とされる成分を基音と呼ぶ。
弦楽器や管楽器などの音を正弦波(サインウェーブ)成分の集合に分解すると、元の音と同じ高さの波の他に、その倍音が多数(理論的には無限個)現れる。
ただし、現実の音源の倍音は必ずしも厳密な整数倍ではなく、倍音ごとに高めであったり低めであったりするのが普通で、揺らいでいることも多い[要出典]。逆に、簡易な電子楽器の音のように完全に整数倍の成分だけの音は人工的な響きに感じられる。
歴史的な背景
古来合唱などで、本来聞こえるはずのない高い声がしばしば聞かれる現象が知られており、「天使の声」などと呼ばれて神秘的に語られていた。これらは倍音を聴取していたものだと現在では考えられている。
科学的な背景
倍音は、数学者のマラン・メルセンヌによって1636年に発見された。
1753年、ダニエル・ベルヌーイは、波動方程式の解として三角関数を想定することにより、弦の振動は基本周波数とその整数倍の周波数の成分(倍音)の重ね合わせとして表せることを発見した。
この概念は、19世紀の数学者ジョゼフ・フーリエの見出したフーリエ級数によって体系的に理論化された。フーリエ級数とは、周期関数
基音
基音(英: fundamental tone)は複合音に含まれる最も周波数の低い音である。基本波(英: fundamental component)とも呼ばれる[2]。
基音は楽音の音高(ピッチ)をほぼ規定する。その周波数は基本周波数
上記、倍音の周波数と平均律の音程を視覚的に現した図を示す。赤色が平均律、青色と数字が倍音の次数を現している。渦巻きの1周が1オクターブに対応する。

オーバーブローとフラジオレット
管楽器や弦楽器では、同じ管や弦の長さでも、一部の倍音成分を強調してより高い音を奏でることが出来る。特に金管楽器ではその出される音のほとんどはこの奏法による。このような音や奏法を、管楽器ではオーバーブロー(overblow)、弦楽器ではフラジオレット(flageolet)またはハーモニクスと呼ぶ。なお、物理的には、元になる振動の第n倍音を強調して新たな基音とする状態を、第n次モードと呼ぶ。
- 木管楽器においては、最低音よりもオクターヴ以上高い音を出すときに、第2倍音以降が用いられる。ただし、クラリネットにあっては偶数倍音が得られないので、1オクターヴと完全5度以上の音を出すときに第3倍音以降の奇数倍音が用いられる。しばしば倍音を出しやすくするために、側孔を用いる。それに比べてサクソフォーンは音の発生原理から比較的簡単な奏法となる。フルートでは、低い音の運指を使ってオーバーブローを用いることがあり、ハーモニクスと呼ばれる。
- 金管楽器にあっては、スライドを持ったトロンボーンを除き、バルブが実用化されるまではオーバーブローのみが音を変える手段であった。金管楽器では第2倍音以降が常用され、「ペダルノート」と呼ばれる第1倍音はトロンボーン、ホルン、チューバなどでたまに用いられるだけである。
- 弦楽器においては、振動する弦の1/nの所に軽く触れることによって基音と幾つかの倍音が抑制され、n次モードの発音を得る。

代表的な波形とその倍音
- 正弦波
- 倍音はない。
-
鋸歯状波
鋸歯状波の波形 - 楽音の中で最も基本になるのは、鋸歯状波である。波形が鋸の歯のようになっているので、この名がある。ヴァイオリンや金管楽器の波形はこれに近い。鋸歯状波には基音とすべての倍音を含み、高い倍音ほど振幅が漸減し、第n倍音の振幅は基音の振幅の1/nである。
-
矩形波の音の倍音
矩形波の波形 - 波形が「己」の字を横にしたような形をしているのが矩形波である。クラリネットの波形はこれに近い。基音と奇数倍音だけが含まれ、第n倍音の音波の振幅は1/nである。
-
三角波の音の倍音
三角波の波形 - 波形がV字型をしているのが三角波である。基音と奇数倍音だけが含まれ、第n倍音の音波の振幅は1/n²である。これは矩形波の時間積分した波形が三角波になるためである。
分析
倍音の構造を理解することは音高および音色の理解に直結するため、倍音を分析する様々な手法が提案されている。
基本波フィルタリング
基本波フィルタリングは複合音に対するフィルタリングで基音波形のみを抽出する操作である[3]。基音は全ての倍音・上音より低い周波数を持つため、複合音をローパスフィルタに通すことで原理的には基本波が得られる。
現実の音響信号を解析するには遮断周波数の設定と低域雑音への対策が重要になる。まず複合音からローパスフィルタで基本波を取り出すため、その遮断周波数
「倍音」の例文・使い方・用例・文例
- >> 「倍音」を含む用語の索引
- 倍音のページへのリンク