メルセンヌの法則
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/08/22 21:03 UTC 版)


メルセンヌの法則(メルセンヌのほうそく、英: Mersenne's laws)とは、張った弦もしくはモノコードを鳴らしたときの振動数に関する法則で、楽器の調律や製造に役立っている。フランスの数学者で音楽理論家でもあるマラン・メルセンヌによる1637年の著作 Traité de l'harmonie universelle で最初に提唱された[2]。
この法則は、弦が出す音の高さ(周波数)と、弦の長さや質量、張力との間の関係を与える。ピアノやハープのような弦楽器の構造や機能はメルセンヌの法則に支配されており、弦全体に正しい音高を持たせるには、楽器は相応の張力に耐えられなければならない。低い音を発する弦は太く、したがって単位長さ当たりの質量は大きい。張力は一般に小さい。高音側の弦は通常細く、張力は大きいが、長さは短くすることもできる。
メルセンヌはこれらの関係を自身で発見したわけではない[3]。コーエン(2013)によると、「この結果はガリレオが得ていたものと本質的に変わらないが、メルセンヌの法則と呼ばれるには十分な理由がある」。すなわち、メルセンヌが実験を通じて理論が真実であることを証明した一方、ガリレオは証明が不可能だと考えていた[4]。メルセンヌの理論は正しかったが、測定精度はそれほど良くなかった。ジョゼフ・ソヴァール (1653-1716) はうなりを利用した測定でより良い結果を得た[5]。
定式化
弦の基本周波数 f0 は以下の特徴を持つ。
- a) 弦の長さ L に反比例する(ピタゴラスの法則)[1]