製法・性能・用途
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/06/03 08:23 UTC 版)
「発泡プラスチック」の記事における「製法・性能・用途」の解説
注型発泡成形法のうち、発泡製造体(スラブ)を後加工するブロック法と型内で発泡成形するモールディング法が用いられる。ブロック法は工程紙上にミックスした原料を吐出して自由発泡させ、幅1-2m高さ0.3-1mの断面を持つ角状またはカマボコ状の塊状フォームを短尺では2m程のブロックを、連続的には60m程度の長い発泡品を製造する。これには、二次加工時のロスを減らすために、上面に生じる冠状の表面荒れ低減や一定の断面形状を得るよう様々なプロセスの工夫が為されている。裁断やプレス成形など二次加工を前提とするブロック製のラブフォームは弾性やクッション性などの柔らかさ、また濾過性や吸音性などを特徴とする。家具・寝具類またはスピーカー・ヘッドフォンなどのクッションやマット、衣類関連のパッドやインソール類、家電機器や産業機器類の吸音・断熱材またはフィルターなど、また農業分野の水耕マットや培地など、広い範囲で使用される。
※この「製法・性能・用途」の解説は、「発泡プラスチック」の解説の一部です。
「製法・性能・用途」を含む「発泡プラスチック」の記事については、「発泡プラスチック」の概要を参照ください。
製法・性能・用途
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/06/03 08:23 UTC 版)
「発泡プラスチック」の記事における「製法・性能・用途」の解説
EPSでは、発泡剤を配合したPSの粒を用いる。あらかじめ予備発泡させ密度を60 - 100g/L程度にする手法と、予備発泡をさせない方法がある。これらを金型内に投入して加熱し、20 - 70倍に発泡させて成形する。加熱方法は金型に開けた小孔から水蒸気を吹き込む方法が多く、加熱温度が100℃程度だと高密度の、105 - 130℃程度だと低密度の発泡体が得られる。軽量であり断熱や緩衝性また印刷適性にも優れ、EPSは容器材料に用いられる例が多く、フィルムや段ボールなど他の素材と複合化して、水産・農業分野で広く採用されている。その他にも、衝撃性を生かしたヘルメットなど、難燃性を付与した建材分野、高い浮力から浮子や救命胴衣などに使われる中、1980年代後半頃から土木分野での各種工法が開発され需要を拡大している。
※この「製法・性能・用途」の解説は、「発泡プラスチック」の解説の一部です。
「製法・性能・用途」を含む「発泡プラスチック」の記事については、「発泡プラスチック」の概要を参照ください。
製法・性能・用途
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/06/03 08:23 UTC 版)
「発泡プラスチック」の記事における「製法・性能・用途」の解説
溶融発泡成形では、あらかじめPEに発泡剤など原料を混練したものを再度加熱する手法が取られる。架橋が必須となり、方法も電子線と化学架橋の二種類がある。発泡シートを得るには、あらかじめ各種原料をソリッドのシートとして成形し、次工程でこれに電子線を放射して架橋した後に加熱発泡させ連続的に成形する。加熱方法も縦置きの炉に上からシートを通して発泡させる形式と、混塩など熱媒で満たした浴槽に浸漬して発泡し洗浄工程を得て製品を得る形式がある。各種の断熱・シール用として土木建築分野で使用される他、パイプ状に二次加工が施され水道やエアコンなどの配管断熱材としても使われる。また、耐水性から水周りで使われる玩具類もPEフォームが採用される。
※この「製法・性能・用途」の解説は、「発泡プラスチック」の解説の一部です。
「製法・性能・用途」を含む「発泡プラスチック」の記事については、「発泡プラスチック」の概要を参照ください。
製法・性能・用途
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/06/03 08:23 UTC 版)
「発泡プラスチック」の記事における「製法・性能・用途」の解説
融点以上で急激な粘度低下を起こすPPで発泡体を得るには基本的に架橋が欠かせない。加圧発泡法は各種原材料を金型内部に密閉し、加熱加圧して化学架橋反応と発泡を起こして膨張させるバッチ製造法。金型によって発泡ガスの散逸が抑えられるため、スラブ状の高倍率発泡品が得られる。形状は金型に依存し、厚みのある成形が可能である。
※この「製法・性能・用途」の解説は、「発泡プラスチック」の解説の一部です。
「製法・性能・用途」を含む「発泡プラスチック」の記事については、「発泡プラスチック」の概要を参照ください。
製法・性能・用途
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/06/03 08:23 UTC 版)
「発泡プラスチック」の記事における「製法・性能・用途」の解説
EVAフォームは、プレス架橋発泡成形法にて厚みを持ったシートが製造される。前工程としてニーダーやミキサーを用いて各原料を発泡剤や架橋剤の分解点より低い90 - 110℃にて短時間で混練し、低温のカレンダーロールで架橋も発泡も起こっていないシート状に成形する。これをプレス成形機にかけて架橋と発泡を行いつつ成形するが、この際に温度やプレス時間などの条件を細かく調整し、架橋を制御しなければならない。架橋が不充分だと気泡の大きさが均一にならず、離型性も低下する。逆に架橋が進みすぎると溶融粘度が高くなり、成形品にシワやクラックが入りやすくなる。このばらつきは肉厚が厚くなるとさらに顕著となる。得られたシートはスライスや打ち抜きなどの加工が施される。これらEVA架橋発泡体が最も使われる用途は履物であり、サンダル・スリッパ類からスニーカーのミッドソールなどに採用されている。
※この「製法・性能・用途」の解説は、「発泡プラスチック」の解説の一部です。
「製法・性能・用途」を含む「発泡プラスチック」の記事については、「発泡プラスチック」の概要を参照ください。
製法・性能・用途
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/06/03 08:23 UTC 版)
「発泡プラスチック」の記事における「製法・性能・用途」の解説
発泡フィルム製造法は、二軸延伸技術を基礎とした製法である。異種材料類を混入したPETフィルムを溶融押出成形法にて製造し急速に冷却すると、PETは結晶が進まないまま固化した状態に留まる。これを二軸延伸させると、PETフィルムはボイドを生じながら配向し、機械的性質が高まりながら微細な気泡を伴うフォーム化する。これを熱固定させる工程に通して高分子を結晶化させる。この製法で得られるフォームは発泡倍率は低いが光拡散効果に優れ、液晶ディスプレイ用バックライトの反射板などに使用される。
※この「製法・性能・用途」の解説は、「発泡プラスチック」の解説の一部です。
「製法・性能・用途」を含む「発泡プラスチック」の記事については、「発泡プラスチック」の概要を参照ください。
製法・性能・用途
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/06/03 08:23 UTC 版)
「発泡プラスチック」の記事における「製法・性能・用途」の解説
ノボラック型PFフォームの原料は固体であり、これに架橋剤や発泡剤などを加えコンパンウンドした粒状体を金型またはプレスにて加熱加工する。化学プラントのパイプカバーなど工業用途にて採用されるが、建築分野ではあまり使われていない。
※この「製法・性能・用途」の解説は、「発泡プラスチック」の解説の一部です。
「製法・性能・用途」を含む「発泡プラスチック」の記事については、「発泡プラスチック」の概要を参照ください。
- 製法性能用途のページへのリンク