歴史的背景と発展
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/07/07 08:15 UTC 版)
「シュレーディンガー方程式」の記事における「歴史的背景と発展」の解説
マックス・プランクの光の量子化(黒体輻射を参照)にしたがって、アルベルト・アインシュタインは、プランクの量子は光子(光の粒子)であると説明し、光子のエネルギーはその波長に比例すると提案している(これが波動と粒子の二重性の最初の現れ)。エネルギーと運動量は特殊相対性理論の波長と波数と同じ方法で関係しているから、光子の運動量p が波数k と比例関係にあることがわかる。 p = h λ = ℏ k . {\displaystyle p={\frac {h}{\lambda }}=\hbar k.} ルイ・ド・ブロイは、粒子が電子のようなものでも、すべての粒子に対してこの式が正しいと仮説を立てた。ド・ブロイは、物質波がそれと対応する粒子に伴って伝搬すると仮定すると、電子は定常波を形成する、つまり原子核のまわりで離散的な回転周波数のみが許されることを示した。これらの量子化された軌道は不連続なエネルギー準位に対応し、ド・ブロイはボーアの原子模型がエネルギー準位を形成することを再現した。ボーアの原子模型は角運動量の量子化の仮定の上で成り立っている。 L = n h 2 π = n ℏ . {\displaystyle L=n{h \over 2\pi }=n\hbar .} ド・ブロイによれば、電子は波で表現され、波長の数は電子の軌道の円周上にぴったり収まらねばならない。従って、 n λ = 2 π r . {\displaystyle n\lambda =2\pi r.} このアプローチは本質的に、電子の波を半径r の円周軌道に沿った一次元に限定して考えている。 1921年、ド・ブロイに先立ち、シカゴ大学のアーサー・C・ランが、今で言うド・ブロイの関係を導くために、相対性理論の四元運動量の完成を基にした同様の主張を使った。ド・ブロイと違って、ランはさらに進んで、現在シュレーディンガー方程式と呼ばれるところの微分方程式を定式化し、水素原子のエネルギーの固有値を解いた。不幸にもこの論文はフィジカル・レビューに却下されてしまった。Kamen はこの詳細を述べている。 ド・ブロイの理論が登場すると、物理学者ピーター・デバイは即座に、もし粒子が波として振る舞うなら、それらは何らかの形の波動方程式を満たすべきだと論評した。デバイの見解に刺激を受け、シュレーディンガーは電子の適切な 3 次元波動方程式を見つけようと決意した。シュレーディンガーは、光学と力学を結ぶウィリアム・ローワン・ハミルトンの類推に導かれた。それは、波長を 0 にする極限では光学系は力学系に似るという考え方である(ゼロ波長極限での光の経路は、フェルマーの原理に従った明確な軌跡を描く。光学におけるフェルマーの原理の力学における対応物は最小作用の原理である)。 彼の論証を現代的な表現で以下に記述する。彼の発見した方程式は i ℏ ∂ ∂ t Ψ ( r , t ) = − ℏ 2 2 m ∇ 2 Ψ ( r , t ) + V ( r ) Ψ ( r , t ) . {\displaystyle i\hbar {\frac {\partial }{\partial t}}\Psi ({\boldsymbol {r}},t)=-{\frac {\hbar ^{2}}{2m}}\nabla ^{2}\Psi ({\boldsymbol {r}},t)+V({\boldsymbol {r}})\Psi ({\boldsymbol {r}},t).} しかしそのとき既に、アルノルト・ゾンマーフェルトは相対論補正を使ってボーアの原子模型を改良していた。シュレーディンガーは相対性理論のエネルギーと運動量の関係を使って、現在ではクーロンポテンシャルにおけるクライン-ゴルドン方程式として知られるものを見つけようとした: ( E + e 2 r ) 2 ψ ( x ) = − ∇ 2 ψ ( x ) + m 2 ψ ( x ) . {\displaystyle \left(E+{e^{2} \over r}\right)^{2}\psi (x)=-\nabla ^{2}\psi (x)+m^{2}\psi (x).} 彼はこの相対論的方程式において定常波を発見したが、相対論補正はゾンマーフェルトの公式と一致しなかった。落胆して彼は計算をやめ、1925年12月、彼は人里離れた山小屋に引きこもってしまった。 山小屋でシュレーディンガーは、初期の非相対論的計算は発表に値する新しさがあると認め、将来にわたって相対論的修正の問題から手を引くことを決めた。水素原子におけるシュレーディンガー方程式の解の難しさ(後に彼は友人の数学者ヘルマン・ワイルに助けられている)にもかかわらず、シュレーディンガーは1926年に発表した論文で、彼の非相対論的な波動方程式は水素の正しいスペクトルのエネルギーを導出することを示している。その方程式で、シュレーディンガーは水素原子の電子を波 Ψ(x , t ) として扱い、陽子によって作られるポテンシャルの井戸V の中で動くとした上で、水素スペクトル系列を計算した。この計算はボーアの原子模型のエネルギー準位を正確に再現した。論文でシュレーディンガーは自分でこの方程式を以下のように説明している。 「 The already ... mentioned psi-function.... is now the means for predicting probability of measurement results. In it is embodied the momentarily attained sum of theoretically based future expectation, somewhat as laid down in a catalog. 」 —Erwin Schrödinger この1926年の論文はアインシュタインに熱狂的に支持された。アインシュタインは物質波を自然の直感的な表し方として見ており、ハイゼンベルクの行列力学をあまりに形式的だと非難していた。 シュレーディンガー方程式は波動関数 Ψ の振舞いの詳細を述べるが、その本質について何も述べない。シュレーディンガーは 4 報目の論文で、これを電荷密度として理解しようとしたが、失敗した。1926年、シュレーディンガーの 4 報目かつ最後の論文が発表された数日後、マックス・ボルンは波動関数 Ψ を確率振幅(その絶対値の二乗 |Ψ|2 が確率密度に等しい)として解釈することに成功した。しかしシュレーディンガーは常に統計学的、確率的なアプローチと、それに関連した波動関数の崩壊を反対しており(アインシュタインのように、量子力学はその背後にある決定論に関する統計学的近似であると信じていた)、ついにコペンハーゲン解釈と和解することはなかった。ド・ブロイは後年、比例係数によって複素関数と対応付けられる実数値波動関数を提唱し、ド・ブロイ=ボーム理論を生み出した。
※この「歴史的背景と発展」の解説は、「シュレーディンガー方程式」の解説の一部です。
「歴史的背景と発展」を含む「シュレーディンガー方程式」の記事については、「シュレーディンガー方程式」の概要を参照ください。
- 歴史的背景と発展のページへのリンク