歴史的脈絡とは? わかりやすく解説

歴史的脈絡

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/09/27 15:53 UTC 版)

レフシェッツ不動点定理」の記事における「歴史的脈絡」の解説

レフシェッツは不動点定理を[Lefschetz 1926]で提起した。レフシェッツの注目点は、不動点写像ではなく、むしろ現在では写像一致点英語版)(coincidence point)と呼ばれるものであった。 同じ次元向き付け可能多様体 X から向き付け可能多様体 Y への 2つ写像 f と g が与えられると、f と g のレフシェッツ数の一致(Lefschetz coincidence number)は次の要に定義される。 Λ f , g = ∑ ( − 1 ) k T r ( D X ∘ g ∗ ∘ D Y − 1 ∘ f ∗ ) . {\displaystyle \Lambda _{f,g}=\sum (-1)^{k}\mathrm {Tr} (D_{X}\circ g^{*}\circ D_{Y}^{-1}\circ f_{*}).} ここに、f∗ は上で定義した通りで、g∗ は有理係数をもつコホモロジー群上に誘導され写像であり、DXDY各々 X と Y のポアンカレ双対同型である。 レフシェッツは、一致する数が 0 でなければ、f と g は一致する点を持つことを証明した。彼は論文X = Y とし、g をd恒等写像とすると、より簡単な結果得られることを示し、これが現在不動点定理として知られている。

※この「歴史的脈絡」の解説は、「レフシェッツ不動点定理」の解説の一部です。
「歴史的脈絡」を含む「レフシェッツ不動点定理」の記事については、「レフシェッツ不動点定理」の概要を参照ください。

ウィキペディア小見出し辞書の「歴史的脈絡」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ



英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「歴史的脈絡」の関連用語

歴史的脈絡のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



歴史的脈絡のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaのレフシェッツ不動点定理 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。

©2025 GRAS Group, Inc.RSS