生成的モデル
- 識別的モデル - 分類や回帰に用いられるロジスティックモデルの一種。観測可能なデータを用いて決定境界を設定する。
- グラフィカルモデル - 確率変数間の条件付き依存構造をグラフで表現した確率モデル。
- 生成的人工知能 - プロンプトに応じてコンテンツを生成することができる人工知能シスステム。
注釈
- ^ Ng & Jordan 2002、Jebara 2004、Mitchell 2015の3つの代表的な資料では、異なる区分けや定義が示されている。
脚注
- ^ Ng & Jordan (2002): "Generative classifiers learn a model of the joint probability, , of the inputs x and the label y, and make their predictions by using Bayes rules to calculate , and then picking the most likely label y.
- ^ Jebara 2004, 2.4 Discriminative Learning: "This distinction between conditional learning and discriminative learning is not currently a well established convention in the field."
- ^ Ng & Jordan 2002: "Discriminative classifiers model the posterior directly, or learn a direct map from inputs x to the class labels."
- ^ a b Mitchell 2015: "We can use Bayes rule as the basis for designing learning algorithms (function approximators), as follows: Given that we wish to learn some target function , or equivalently, , we use the training data to learn estimates of and . New X examples can then be classified using these estimated probability distributions, plus Bayes rule. This type of classifier is called a generative classifier, because we can view the distribution as describing how to generate random instances X conditioned on the target attribute Y.
- ^ Mitchell 2015: "Logistic Regression is a function approximation algorithm that uses training data to directly estimate , in contrast to Naive Bayes. In this sense, Logistic Regression is often referred to as a discriminative classifier because we can view the distribution as directly discriminating the value of the target value Y for any given instance X
- ^ Ng & Jordan 2002
- ^ Bishop, C. M.; Lasserre, J. (24 September 2007), “Generative or Discriminative? getting the best of both worlds”, in Bernardo, J. M., Bayesian statistics 8: proceedings of the eighth Valencia International Meeting, June 2-6, 2006, Oxford University Press, pp. 3–23, ISBN 978-0-19-921465-5
- ^ a b “Scaling up—researchers advance large-scale deep generative models”. Microsoft (2020年4月9日). 2020年7月24日閲覧。
- ^ “Generative Models”. OpenAI (2016年6月16日). 2020年5月19日閲覧。
- ^ Tomczak, Jakub (2022). Deep Generative Modeling. Cham: Springer. p. 197. doi:10.1007/978-3-030-93158-2. ISBN 978-3-030-93157-5
- ^ Kaplan, Jared; McCandlish, Sam; Henighan, Tom; Brown, Tom B.; Chess, Benjamin; Child, Rewon; Gray, Scott; Radford, Alec; Wu, Jeffrey; Amodei, Dario (2020). "Scaling Laws for Neural Language Models". arXiv:2001.08361 [stat.ML]。
- ^ “Better Language Models and Their Implications”. OpenAI (2019年2月14日). 2020年7月24日閲覧。
- ^ Brock, Andrew; Donahue, Jeff; Simonyan, Karen (2018). "Large Scale GAN Training for High Fidelity Natural Image Synthesis". arXiv:1809.11096 [cs.LG]。
- ^ Razavi, Ali; van den Oord, Aaron; Vinyals, Oriol (2019). "Generating Diverse High-Fidelity Images with VQ-VAE-2". arXiv:1906.00446 [cs.LG]。
- ^ “Jukebox”. OpenAI (2020年4月30日). 2020年5月19日閲覧。
外部リンク
- Shannon, C. E. (1948). “A Mathematical Theory of Communication”. Bell System Technical Journal 27 (July, October): 379–423, 623–656. doi:10.1002/j.1538-7305.1948.tb01338.x. hdl:10338.dmlcz/101429 .
- Mitchell, Tom M. (2015). “3. Generative and Discriminative Classifiers: Naive Bayes and Logistic Regression”. Machine Learning
- Ng, Andrew Y.; Jordan, Michael I. (2002). “On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes.”. Advances in Neural Information Processing Systems .
- Jebara, Tony (2004). Machine Learning: Discriminative and Generative. The Springer International Series in Engineering and Computer Science. Kluwer Academic (Springer). ISBN 978-1-4020-7647-3
- Jebara, Tony (2002). Discriminative, generative, and imitative learning (PhD). Massachusetts Institute of Technology. hdl:1721.1/8323。, (mirror, mirror), published as book (above)
- Code accompanying the book (Tomczak, Jakub (2022). Deep Generative Modeling. Cham: Springer. p. 197. doi:10.1007/978-3-030-93158-2. ISBN 978-3-030-93157-5): “Introductory examples”. GitHub. 2022年10月21日閲覧。