絶対値
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/02/27 02:13 UTC 版)
ナビゲーションに移動 検索に移動実数の絶対値を一般化する概念は、数学において広範で多様な設定のもとで生じてくる。例えば、絶対値は複素数、四元数、順序環、体などに対しても定義することができる。様々な数学的あるいは物理学的な文脈における大きさ (magnitude) や距離およびノルムなどの概念は、絶対値と緊密な関係にある。
用語と記法
1806年にジャン゠ロベール・アルガンが導入した用語 module は、フランス語で「測る単位」を意味する言葉で、特に複素数の絶対値を表すためのものであった[1][2]。それは対応するラテン語の modulus として1866年に英語にも借用翻訳されている[1]。absolute value が本項に言う意味で用いられたのは、少なくとも1806年にフランス語で[3]および1857年に英語で[4][注釈 1]見られる。両側を縦棒で括る記法 |x| はカール・ヴァイアシュトラスが1841年に導入した[5]:25。絶対値を表すほかの名称には numerical value[1](数値)や magnitude[1](大きさ)などが挙げられる。プログラム言語や計算機ソフトでは x の絶対値を abs(x) のような函数記法で表すことが一般に行われる。
縦棒で括る記法は他の数学的文脈でもいくつも用いられる(例えば、集合を縦棒で括ればその集合の濃度を表し、行列に用いれば行列式を表す)。したがって、縦棒が絶対値を表すためのものか判断するには、その引数が絶対値の概念が定義される代数的対象(例えば、実数や複素数や四元数などのノルム多元体)かどうかに注意が払われなければならない。絶対値とよく似て非なる概念に縦棒記法が使われる例として、Rn のベクトルに対するユークリッドノルム[6]:1および上限ノルム[7]:4などが挙げられるが、これらについては二重縦棒と下付き添字を用いた記法(それぞれ ‖ • ‖2 および ‖ • ‖∞)を用いるのがより一般的で紛れも少ない。
定義
実数 x の絶対値は「実数から符号を取り除いたもの」:
注釈
- ^ オックスフォード英語辞典第2版の最も古い引用は1907年から。もちろん relative value(相対値)と対照を成す語としても absolute value(絶対値)は使われる
- ^ 例えば実数直線をxy-平面の x-軸と看做せば、任意の実数 x は点 (x, 0) で表され、0 は原点 (0, 0) に対応する。平面上の任意の点 (x, y) と原点とのユークリッド距離は √(x − 0)2 + (y − 0)2 = √x2 + y2 で与えられるから、x と 0 との距離はちょうど √x2 に等しい。
- ^ ただし、この微分可能性は複素微分可能を意味しない。つまり、複素変数の絶対値函数はコーシー–リーマンの方程式を満たさない[10]。
- ^ この公理系は極小ではない。実際、非負性は他の三つから出る: 0 = d(a, a) ≤ d(a, b) + d(b, a) = 2d(a, b).
出典
- ^ a b c d Oxford English Dictionary, Draft Revision, June 2008[要ページ番号]
- ^ Nahin, O'Connor and Robertson, and functions.Wolfram.com.; for the French sense, see Littré, 1877
- ^ Lazare Nicolas M. Carnot, Mémoire sur la relation qui existe entre les distances respectives de cinq point quelconques pris dans l'espace, p. 105, - Google ブックス。
- ^ James Mill Peirce, A Text-book of Analytic Geometry, p. 42, - Google ブックス
- ^ Higham, Nicholas J., Handbook of writing for the mathematical sciences, SIAM., ISBN 0-89871-420-6
- ^ Spivak, Michael (1965). Calculus on Manifolds. Boulder, CO: Westview. ISBN 0805390219
- ^ Munkres, James (1991). Analysis on Manifolds. Boulder, CO: Westview. ISBN 0201510359
- ^ Mendelson 2008, p. 2.
- ^ Stewart, James B. (2001). Calculus: concepts and contexts. Australia: Brooks/Cole. ISBN 0-534-37718-1
- ^ a b Weisstein, Eric W. "Absolute Value". MathWorld (英語).
- ^ Bartle & Sherbert 2011, p. 163.
- ^ Wriggers, Peter (1999), Panatiotopoulos, Panagiotis, ed., New Developments in Contact Problems, ISBN 3-211-83154-1
- ^ Hindry & Silverman 2000, p. 171.
- ^ たとえば Yann Bugeaud; Kálmán Győry (1996), “Bounds for the solutions of unit equations”, Acta Arithmetica 74: 67--80, MRMR1367579
「絶対値」に関係したコラム
-
FX(外国為替証拠金取引)のRSIとは、通貨ペアの売られすぎ、買われすぎを調べるためのテクニカル指標の1つです。RSIは、Relative Strength Indexの略で、日本語では相対力指数とい...
- 絶対値のページへのリンク