ルベーグ積分
(Lebesgue integral から転送)
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/07/15 09:13 UTC 版)

数学において、一変数の非負値関数の積分は、最も単純な場合には、その関数のグラフと x 軸の間の面積と見なすことができる。ルベーグ積分(ルベーグせきぶん、英: Lebesgue integral)は、積分をより多くの関数へ拡張したものである。ルベーグ積分においては、被積分関数は連続である必要はなく、至るところ不連続でもよいし、関数値として無限大をとることがあってもよい。さらに、関数の定義域も拡張され、測度空間と呼ばれる空間で定義された関数を被積分関数とすることもできる。
数学者は長い間、十分滑らかなグラフを持つ非負値関数、例えば有界閉区間上の連続関数、に対しては、「曲線の下部の面積」を積分と定義できると理解しており、多角形によって領域を近似する手法によってそれを計算した。しかし、より不規則な関数を考える必要が、例えば解析学や確率論において極限を考えるときに生じたため、より注意深い近似の手法が適切な積分を定義するために必要なことが明らかとなった。また、局所コンパクト群のような、実数直線よりも一般の空間上で積分をしたいことがある。ルベーグ積分はこの重要な仕事をするために必要な正しい抽象化を与える。例えば、フーリエ級数などの関数列の極限として表される関数に対して、積分と極限操作が可換となるかどうかをリーマン積分で考えると非常に繊細な議論が必要だが、ルベーグ積分では、積分と極限操作の交換が可能であるための簡単な十分条件が分かっている。
ルベーグ積分は実解析と呼ばれる数学の分野に属する確率論や、他の多くの数理科学分野において、重要な役割を果たす。ルベーグ積分という名前は、その積分を導入した数学者アンリ・ルベーグ[1][2] (Henri Lebesgue, 1875–1941) に由来している。それはまた公理的確率論の中枢部でもある。
「ルベーグ積分」(Lebesgue integration) という用語は、カラテオドリに始まる一般の測度に関する関数の積分の一般論を意味することもあるし、ルベーグ測度に関して実数直線(あるいは n-次元ユークリッド空間)の特定の部分集合(特にルベーグ可測集合)上定義されたルベーグ可測関数を積分するという特定の場合を意味することもある[3]。
導入
積分を厳密なものにしようという動きは、19世紀からである。ベルンハルト・リーマンが提案したリーマンの積分はこの目的に向けて大きな前進であった。リーマンは関数の積分を「簡単に計算できる積分」で近似することによって定義した。この定義による積分は、それまで解答が知られていた問題に対してそのままの結果をもたらしたし、他の問題に対しては新しい結果を与えることになった。しかし、リーマン積分は関数列の極限と相性が悪く、積分と極限が同時に現れるような場面では解析が困難な場合がある。それに対して、ルベーグ積分は、積分記号の下での極限がより扱いやすくなっている。ルベーグ積分は、リーマン積分と異なる形の「簡単に計算できる積分」を考えており、このことがルベーグ積分がリーマン積分よりよく振舞う理由となっている。さらに、ルベーグ積分ではリーマン積分より広い種類の関数に対して積分を定義することが可能になっている。例えば、無理数で 0 を有理数で 1 をとる関数(ディリクレの関数)を閉区間 [0, 1] 上で考えると、リーマン積分では積分が定義されないが、ルベーグ積分では積分できる。
直感的な解釈


積分の定義方法の違いを直感的に理解できるように、山の(海抜より上の部分の)体積を計算する例を考えよう。この山の境界ははっきりと定まっているとする(これが積分範囲である)。
- リーマン積分による方法
- ケーキを切るときのように、山を縦方向に切り分けて細分する。このとき、各パーツの底面は長方形になるようにする。次に、各パーツで最も標高が高いところを調べ、底面の面積とその標高を掛け合わせる。各パーツごとに計算したその値を足したものを、上リーマン和と呼ぶことにする。同様のことを、最も標高が低いところに対して行い、下リーマン和と呼ぶことにする。分割を細かくしていったときに、上・下のリーマン和が同じ値に収束するときに、リーマン積分可能であるといい、その極限値が山の体積になる。
- ルベーグ積分による方法
- 山の等高線を地図にする。等高線にそって地図を裁断して、地図をいくつかのパーツに分解する。各パーツは面積を計算できる平面図形なので(測度が分かっているので)、パーツの面積とそのパーツの最も低い点の標高を掛け合わせる。各パーツのこの値を足したものを「ルベーグ和」と呼ぶことにする。この「ルベーグ和」はルベーグ積分の構成にある単関数の積分に相当する。等高線の間隔を半分にしていったときの「ルベーグ和」の極限値が山の体積になる。
例
有理数体
ルベーグ積分の定式化の一つの方法として、単函数(有限個の指示函数の実係数線型結合)を用いるものがある。単函数は、可測函数の値域を帯状に分割することにより、可測函数を近似することができる。単函数の積分は各帯状領域の測度にその高さを掛けたものに等しい。非負値をとる一般の可測函数の積分はその函数の単函数による近似の上限として定義され、非負と限らない場合には函数を正成分と負成分の二つの非負値函数の差に分解してそれらの積分の差として可測函数の積分を定義する。
集合の定義関数の場合
与えられた測度 μ に関する可測集合 S に対して、S の定義関数
![]() |
この節の加筆が望まれています。
|
前述のように、広義リーマン積分による定義もある。
和書:
- 高木貞治:「定本 解析概論」、岩波書店
- 功力金二郎:「実函数論および積分論」、共立出版 (基礎数学講座19巻) (初版二刷(合本)1959年1月5日).
- 伊藤清三:「ルベーグ積分入門」、裳華房, ISBN 978-4-7853-1304-3 (1963年4月).
- 洲之内治男:「ルベーグ積分入門」、内田老鶴圃新社 (1974年5月15日).
- 竹之内脩:「ルベーグ積分」、培風館、ISBN 4-56300427-8 (1980年9月).
- 黒田成俊:「関数解析」、共立出版、ISBN 978-4-32001106-9 (1980年11月10日).
- ハルトマン、ミクシンスキー:「ルベーグ積分入門」、サイエンス社、ISBN 4-7819-0350-9 (1984年4月10日).
- 志賀浩二:「ルベーグ積分30講」、朝倉書店、ISBN 978-4-25411484-3 (1990年9月20日).
- 松浦武信・高橋宣明・吉田正廣:「物理・工学のためのルベーグ積分入門」、東海大学出版部、ISBN 978-4-48601235-1 (1993年5月).
- 志賀徳造:「ルベーグ積分から確率論」、共立出版、ISBN 978-4-320-01562-3 (2000年4月20日).
- 柴田良弘:「ルベーグ積分論」 、内田老鶴圃、ISBN 978-4-75360070-0 (2006年1月).
- 寺澤順:「はじめてのルベーグ積分」、日本評論社、ISBN 978-4-53578544-1 (2009年2月18日).
- 猪狩惺:「実解析入門」、岩波書店、ISBN 978-4-00-005444-7 (1996年5月22日).
- 「数学セミナー」2010年8月号、日本評論社(「実解析」とは何か)
- 新井仁之:「ルベーグ積分講義」、日本評論社、ISBN 978-4-535-78374-4(2003年1月). ※ 初版。改訂版あり。
- 森真:「ルベーグ積分超入門」、共立出版、ISBN 978-4-32001778-8 (2004年12月25日).
- 谷島賢二:「ルベーグ積分と関数解析」、朝倉書店
- 谷島賢二:「新版 ルベーグ積分と関数解析」、朝倉書店、ISBN 978-4-25411606-9(2015年4月20日)
- 岩田耕一郎:「ルベーグ積分:理論と計算手法」、森北出版、ISBN 978-4-627-05431-8 (2015年7月27日).
- 吉田洋一:「ルベグ積分入門」、筑摩書房(ちくま学芸文庫)、ISBN 978-4-48009685-2 (2015年8月6日).
- 澤野嘉宏:「早わかりルベーグ積分」、共立出版 (数学のかんどころ29)、ISBN 978-4-320-11070-0 (2015年9月19日).
- テレンス・タオ:「ルベーグ積分入門」、朝倉書店、ISBN 978-4-254-11147-7 (2016年12月10日).
- 原啓介:「測度・確率・ルベーグ積分:応用への最短コース」、講談社、ISBN 978-4-06156571-5 (2017年9月21日).
- 相川弘明、小林政晴:「ルベーグ積分 要点と演習」、共立出版、ISBN 978-4-32011341-1 (2018年9月12日).※ 演習書
- 服部哲弥:「難問克服 ルベーグ積分」、東京図書、 ISBN 978-4-48902356-9 (2020年12月8日). ※ 問題と回答集
- 吉田伸生:「[新装版] ルベーグ積分入門 使うための理論と演習」、日本評論社、ISBN 978-4-53578941-8 (2021年3月11日).
- 長澤壯之:「ルベーグ流 測度論と積分論」、共立出版、ISBN 978-4-320-11442-5 (2021年3月27日).
- 山上滋:「ルベーグ積分と測度」、裳華房、ISBN 978-4-78531209-1 (2022年2月25日). ※ 測度から始めない構成の本。
- 新井仁之:「ルベーグ積分講義 [改訂版]」、日本評論社、ISBN 978-4-535-78945-6(2023年5月).
- 髙橋秀慈:「ルベーグ積分リアル入門:理論構造を追跡する」、裳華房、ISBN 978-4-7853-1600-6 (2023年8月31日).
- 日野正訓:「ルベーグ積分の基礎」、共立出版、ISBN 978-4-320-11499-9 (2023年10月4日).
- 青木貴史:「秘伝 ルベーグ積分」、共立出版、ISBN 978-4-320-11554-5 (2024年2月5日).
洋書:
- R. M. Dudley, Real Analysis and Probability, Wadsworth & Brookes/Cole, 1989. [* 1]
- P. R. Halmos, Measure Theory, D. van Nostrand Company, Inc. 1950. [* 2]
- L. H. Loomis, An Introduction to Abstract Harmonic Analysis, D. van Nostrand Company, Inc. 1953. [* 3]
- H. Lebesgue, Oeuvres Scientifiques, L'Enseignement Mathématique, 1972
- M. E. Munroe, Introduction to Measure and Integration, Addison Wesley, 1953. [* 4]
- W. Rudin, Principles of Mathematical Analysis Third edition, McGraw Hill, 1976. [* 5]
- W. Rudin, Real and Complex Analysis, McGraw Hill, 1966. [* 6]
- ^ Very thorough treatment, particularly for probabilists with good notes and historical references.
- ^ A classic, though somewhat dated presentation.
- ^ Includes a presentation of the Daniell integral.
- ^ Good treatment of the theory of outer measures.
- ^ Known as Little Rudin, contains the basics of the Lebesgue theory, but does not treat material such as Fubini's theorem.
- ^ Known as Big Rudin. A complete and careful presentation of the theory. Good presentation of the Riesz extension theorems. However, there is a minor flaw (in the first edition) in the proof of one of the extension theorems, the discovery of which constitutes exercise 21 of Chapter 2.
関連項目
外部リンク
- Weisstein, Eric W. “Lebesgue Integral”. mathworld.wolfram.com (英語).
- Lebesgue integration in nLab
- Lebesgue integral - PlanetMath.
- Definition:Lebesgue Integral at ProofWiki
- Definition:Integral of Integrable Function at ProofWiki
- Vinogradova, I.A. (2001) [1994], “Lebesgue integral”, Encyclopedia of Mathematics, EMS Press
- Lebesgue integralのページへのリンク