サンディア研究所における初期の核融合研究 1960年頃~1995年頃
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/05/31 08:30 UTC 版)
「Zマシン」の記事における「サンディア研究所における初期の核融合研究 1960年頃~1995年頃」の解説
Zマシンを含むサンディア研究所のパルスパワープログラムの起源は、1960年代の初めごろ、冷戦の緊張下で当時核兵器の管理と開発の任にあった国防総省(DOD)とアメリカ原子力委員会(AEC)が、核兵器が発する高エネルギーのガンマ線による被害を検証するため、サンディア研究所に高エネルギーのX線実験設備の開発の任を割り当てたことに端を発している さらに1970年代の初めごろには、DODとAECは熱核兵器の核融合反応の物理についての詳しい理解を得るため、研究室環境で核融合反応を再現する方法の開発を、サンディア研究所及びローレンスリバモア国立研究所、ロスアラモス国立研究所などに打診し始めた。一方、この技術は核融合エネルギー利用への道を開くものでもあった。1973年には石油危機が勃発し、核融合エネルギーはにわかに注目を集めることとなり、AECからこの分野の研究について、これらの国立研究機関への大規模な資金供給が行われた。以降、核兵器研究と核融合エネルギー開発という2本の糸が複雑に絡み合いながら核融合炉の開発競争が繰り広げられることとなった。 核融合炉の方式は、トカマク型に代表されるプラズマの磁場閉じ込め(Magnetic Confinement)による連続反応方式と、核融合燃料を密封した小さなペレットを高エネルギーのレーザーまたは粒子ビームで瞬時に加熱してプラズマ化し、その際に発生する爆縮現象 (Implosion)によって慣性閉じ込めを行うパルス反応方式に大別されるが、後者は熱核兵器の内部で発生する現象とほとんど同じである。前出の3研究所については、核融合反応の研究は核兵器の研究を起源としているため、研究対象はほぼ慣性閉じ込め方式に限られていた(現在に至るまで同じ)。 1970年代初頭の時点では、レーザーによる慣性閉じ込め方式については、ローレンスリバモア研究所とロスアラモス研究所がサンディア研究所より大きく先行しており、サンディア研究所にほぼ勝ち目はなかった。1972年にサンディア研究所は電子ビーム加速器の専門家で実績も有していた Gerry Yonas を核融合研究の責任者として雇い入れ、以降 Yonas の指揮のもとで、サンディア研究所の核融合研究は粒子ビーム慣性閉じ込め方式に傾倒して行くことになる。 一方レーザーによる慣性閉じ込め方式についてはQスイッチやモードロッキング(英語版)といった技術的進展を経て、現在はローレンスリバモア研究所の国立点火施設 (National Ignition Facility : NIF)に集中して引き継がれているが、実用とはかけ離れた状態にいる。 この間、1975年1月にAECは原子力規制委員会(NRC)とエネルギー研究開発管理部(英語版)(ERDA)に分割され、さらにERDA は1977年にエネルギー省 (DOE)に改組されている。以降サンディア研究所はDOEとDODからの資金提供で粒子ビーム慣性閉じ込め方式の研究を進めていくことになる。 責任者の Yonas の下でサンディア研究所では Hydra (1972年)、 Proto I (1975年)、 Proto II (1977年)、といった初期の電子ビーム慣性閉じ込め方式の実験機による基礎研究が行われた。この当たりのことは、Yonas 自身が1978年11月発行のサイエンティフィック・アメリカン誌に、最初の一般向け記事「粒子ビームによる核融合」として紹介している。 1978年ごろから EBFA (Electron Beam Fusion Accelerator : 電子ビーム融合加速器)の建造が始まったが、1979年に至って HydraMite (Hydra改造機)、Proto II の実験データを検証した結果、電子ビームでは核融合を達成できない可能が高く、イオンビームの方がより適しているという結論に達した。このため、急きょ建造中のマシンの設計変更を行い、以降このマシンは PBFA (Particle Beam Fusion Accelerator : 粒子ビーム融合加速器) と呼ばれることとなった。同じ1979年には PBFA の完成を待たずに、さらに強力な粒子ビーム融合加速器である PBFA II 建造へのDOEからの資金供給が決定された(このため PBFA は以降 PBFA I と呼ばれることになった)。この PBFA II が後に改造を経てZマシンに変貌を遂げることとなる。 1980年に PBFA I は完成し、6月には最初の試験が行われた。PBFA I は陽子ビームを用いていたが、ビーム形成電極 (diode)の効率と、陽子ビームのターゲットへの収束において重大な問題を抱えていた。この知見から設計中の PBFA II は、より粒子質量の大きいリチウムイオンビームを用いることになった。 1985年に PBFA II は完成し、12月11日に最初の試験が行われた。一方 PBFA II の完成により粒子ビーム核融合研究の主役から退いた PBFA I は、W88核弾頭の開発を支援する目的で、粒子ビームの衝突による強力なX線発生装置である Saturn に改造された(1987年)。 一方、サンディア研究所では1970年代中ごろから、軍事利用を目的として爆縮ホイル(imploding foil)による強力なX線の発生を研究してきたが、これは機密(classified)情報として外部に出ることはなかった。この研究は、1983年に発表された戦略防衛構想 (SDI)と関連しながら1980年代中ごろも細々と続けられており、Saturn をパートタイムでこの研究に用いることになったが、これはZマシンに至る1つの大きな道標となった。 この少し後で、もう一つの決定的な道標がロシアからもたらされた。サンディア研究所では核融合の国際共同研究として、機密に触れない分野に限定してロシア(当時まだソ連であった)ともコラボレーションを行ってきたが、1990年代初頭に行われた一連のコラボレーションにおいて、サンディア研究所は、ロシアが Angara V という実験装置において、ワイヤーアレイを使用したZピンチにより、ホーラムを Saturn の実績をはるかに超えたレベルまで圧縮することに成功していることを知った。Zピンチにホイルではなくワイヤーアレイを用いる方法は、当時クルチャトフ研究所所属で Angara V の実験責任者の1人であったValentin Smirnov が思いついたとされている。 Zピンチに関する研究が機密指定を受けている状態では、ロシアとのそれ以上の共同研究は無理であったため、サンディア研究所はその機密指定解除をDOEに働きかけ、これが認められて、以後、ロシアとの共同研究は長く続けられ、また、Zピンチに関する研究成果が広く公表されることとなった。
※この「サンディア研究所における初期の核融合研究 1960年頃~1995年頃」の解説は、「Zマシン」の解説の一部です。
「サンディア研究所における初期の核融合研究 1960年頃~1995年頃」を含む「Zマシン」の記事については、「Zマシン」の概要を参照ください。
- サンディア研究所における初期の核融合研究 1960年頃~1995年頃のページへのリンク