拡張現実
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/09/07 17:26 UTC 版)

現実の風景の中にCGでつくられた3D映像やキャラクターなどのデジタルコンテンツやデータを重ねて表示することで現実世界を"拡張"する[4][5]。専用のヘッドマウントディスプレイ(以下、HMD)を用いる方法、あるいはスマートフォンのカメラとディスプレイを使って重ね合わせる方法などがある[1]。
概要
拡張現実(AR)とはその名の通り、「現実を拡張する」ものであり、肉眼で直接見ることができる現実の世界に重ねて、本来その現実空間に存在しない情報を表示するというものである[6][7]。複合現実(MR)の一種とも言われ、広くはエクステンデッド・リアリティ(XR)に含まれる[注 1][6][8]。仮想現実(VR)のベースにあるのが映像であるのに対し、ARのベースにあるのは現実世界である[6]。
現実世界の情報とデバイスのシースルー(透過型)のディスプレイに表示されるデジタル情報を組み合わせることで、肉眼だけでは得られない"新たな現実"を作り出せる点が特徴であり、現実の風景の上に本来存在しない映像やアイコン、アノテーションなど様々な情報が付加されることによって、あたかも現実が拡張されたかのように見える[6][7][9]。このシースルーで周囲が見えるという利点は大きく、ユーザーは現実世界で普段の生活と同じように行動をしながらでもデジタル情報を得ることができる[6][7][10]。
現実とリンクしてそこに新たな情報を追加して世界を広げるのがARの特長であり、そもそも現実の世界が見えていないと意味がないため、モバイル利用できることが大前提である[8][10]。屋内はもちろん、屋外でも自由に出歩いたり動き回ったりできなければならない[10]。そのため、デバイスのサイズはできるだけ小型化・軽量化されることが望まれる[11]。
ARの種類
ARはロケーションベースAR、マーカー型AR、マーカーレス型ARの3種類に大別される[1]。
ロケーションベースAR
ロケーションベースARまたは位置拡張ARとは、GPSをはじめとする各種センサーによって位置情報を取得し、その場所に応じた3Dグラフィックスなどのコンテンツをカメラ映像に合成して表示する技術[1]。
マーカー型AR
マーカー型ARとは、マーカーと呼ばれる図形をカメラで読み取ることで、その位置にコンテンツを合成して表示する技術[1]。コンテンツを表示する位置を細かく制御できるという利点がある[1]。
マーカーレス型AR
マーカーレス型ARとは、カメラ映像に含まれる実際の風景や建造物、看板などを識別し、それぞれに合わせたコンテンツを合成して表示する技術[1]。マーカーを使わずにコンテンツを表示できることがメリット[1]。
用途
AR技術は現実とリンクするというその特徴を生かして、Pokémon GOなどの位置情報ゲームのようなエンターテインメント分野ではすでに利用が進んでおり、ビジネスシーンでも様々な利用が始まっている[1][10][12]。産業用途としては、製品や装置・設備の3D CADデータをもとに、仮想空間で試作品を作る前に動作や状態を検証することができるシステムや、工場や機械などの保守・点検の際に、作業員が実際の空間や機器に重ねてディスプレイに表示される点検箇所の情報や作業指示に従って作業を進める業務支援システムなどでの利用例がある[4][10]。その際、同時に作業の過程も録画・記録される[12]。また現実世界の装置の状態を3Dデータで再現して、専門家が遠隔地から検証や保守などに活用するというケースも出ている[4]。2020年の新型コロナの影響で国境を越えた移動が難しくなった日本の大手メーカーにも採用が広がっている[12]。日本からエンジニアが現地の作業員の作業を手伝ったり指導したりすることができるので、作業効率を引き上げ、事故を減らすこともできるからである[12]。さらにセンサーやHMDを駆使して、遠隔地からロボットを分身のように操作する「テレイグジスタンス」と呼ばれる応用例もある。これは宇宙空間など危険な場所での作業をロボットが肩代わりすることが出来る技術で、生産性と安全性の面で将来期待される技術である[4]。
近年では、店舗のレイアウトがスマートフォンの画面に再現されるARショッピングも登場し、小売業や家具店などのオンラインストアで導入されることも増えている[5]。スマートフォンを周囲にかざすことで商品が表示されるため、自分の部屋にいながらにして購入前に商品のイメージを確認できる[5]。また博物館や美術館で見学者のスマートグラスに文字情報や映像を表示して展示物の解説をしたり、順路を明示したりするようなことも考えられている[12]。
中国では、2018年の春節から顔認識機能付きのサングラスが犯罪捜査に使われ始めた[12]。警察のデータベースにある逃亡犯の画像と一致すると警告が出る仕組みの顔認識機能付きのサングラスをかけた警察官が人込みの中から犯罪者を見つけるというものであった[12]。2020年には、新型コロナウイルス感染症対策で空港の旅客の体温を赤外線カメラのついた眼鏡をかけた空港警備員がチェックするということも行われた[12]。眼鏡越しに見ると旅客の顔は四角い枠で囲まれ、その下に体温が表示されるようになっていた[12]。
日本ではドローンによる屋外利用も進み、撮影などに盛んに利用されている[11][13]。国内の規制上、ドローンの操縦者は目視が必要であるため、外界から完全に隔絶されたVRでは操縦できないのに対し、目の前でドローンの飛行データやカメラの映像を確認しながらドローンを目視できるARなら操縦できるからである[13]。
医療
医療はARやVRの導入が進む分野のひとつで、教育、治療・手術支援、リハビリテーション、遠隔医療などで次々と新しい実践が行われていて、すでに手術室や医療訓練、診療所、在宅医療などの現場に入り込み始めている[14][15]。
AR技術を活用した遠隔医療システムとは、遠隔地にいる専門医が現地の執刀医と視界を共有し、ARを使って患者の切開箇所などを指示し、現地にいる執刀医はそれをもとに手術を行うことができるというものである[15]。当初は軍事目的や医学的リソースが乏しい地域や紛争地の外科医に対して遠隔で外科医を教育指導・支援するために開発された技術だったが、リアルタイムの手術にも対応可能となり、様々な国で広く導入されるようになり、医師の大都市集中や診療科偏在などで地方の医師不足が深刻な課題となっている日本でも、その動きは始まっている[15]。
近年、ネット回線を使った通信上の遅延や高額な費用の課題などがクリアされて遠隔手術ができる情報通信の環境が整い始めると、アメリカや中国をはじめ、世界各国が遠隔ロボット手術に取り組むようになった[16]。手術に不可欠な手術支援ロボットの開発も、それまで独り勝ちだった米国製ロボット「ダビンチ」の主要な特許が2019年に切れたことで開発競争に火が付いた[16]。日本では川崎重工業とシスメックスの合弁会社メディカロイドが開発した「hinotori (ヒノトリ)」が2020年8月、国産の手術支援ロボットとして製造販売の承認を得ると、2021年4月にはメディカロイド、神戸大学、NTTドコモがヒノトリと次世代高速通信規格「5G」を使った遠隔操作による模擬手術の実証実験を開始した[16]。この実験と従来の実験との最大の違いは、専用の有線回線でつなぐのではなく、商用5G網を活用した「世界初」という実験だった点であった[16]。遅延を減らすことやセキュリティー面を考慮すれば、光ファイバーの専用の有線回線で各病院のロボットをつなぐのが一番であるが、それには莫大な費用がかかる[16]。またプロバイダーを介した商用の有線接続では、各病院内のネット環境の違いが通信速度に差を生み、ネットワーク化の支障となる[16]。将来、あらゆる病院をつないで実用化することを考えると、無線というハードルはあるものの、商用5G網の利用は大きな魅力になる[16]。それにより、日本中どこの病院でも比較的安価で安定した通信環境の下、ロボットを直接ネットワークにつなぐことが可能になるからである[16]。さらにロボットを使うことで、執刀医のあらゆる動きをデジタル化してデータベースとして蓄積することもできるようになる[16]。卓越した医師の『匠の技』をたくさん集めてすべてデータ化すれば、『匠』とはどういうものかを解析して、熟練した指導医が指導するようにロボットが指導できるようになる。その先には、ロボットが自分で手術をできるようになる可能性もある[16]。2021年、弘前大学医学部附属病院で遠隔手術の実証実験が行われた[16]。
医者が切開することなしに患者の解剖学的構造を把握できる技術もあり、患者や医師の教育、手術の可視化やシミュレーションなど、医療現場の実習などに使われるケースもある[4][14][17]。解剖モデルを3Dで見ることができるARアプリや、注射の際に患者の肌をスキャンして血管の位置を特定し、針を刺すのを容易にしてくれるデバイス、ヘッドセットで患者の脊椎上に脊椎に関する情報をオーバーレイ表示する外科用の技術などが開発されている[14]。
発達障害の子どもたちのソーシャルスキルトレーニングにスマートグラスを用いる研究が進められている[18]
軍事

米国空軍では、1980年代から攻撃ヘリコプターAH-64 アパッチには操縦士用の暗視装置であるAN/AAQ-11パイロット暗視センサー(PNVS)が搭載されていた。1990年代後半からはJHMCSという戦闘機用のHMDが開発され、2003年11月より本格生産が開始された。
米国海軍は、ARを射撃の支援に利用する実証試験を実施したことがある[19]。2016年12月に陸上で、2017年6月にイージス巡洋艦の艦上で、それぞれ実証試験を実施した[19]。対象は艦上に設置した機関砲を扱う銃手で、銃手のヘルメットに取り付けたヘッドセットに目標指示や交戦に関する情報を表示してやることで、情報共有が改善されることが期待されている[19]。
米国陸軍は、2008年から現場で行動する兵士の装備にAR技術を取り入れる研究を行なっている。開発中のシステムは『戦術拡張現実(Tactical Augmented Reality : T.A.R.)』と呼ばれ、兵士がARディスプレイを装着することによって様々な情報をビジュアルで把握できるようになるというもの[20]。2018年、Microsoftと共同でARヘッドセット「HoloLens 2」をベースにした米陸軍用ヘッドセット「IVAS(Integrated Visual Augmentation System)」の試作品を開発する2年契約を結ぶと、2021年には同社に「IVAS」12万台を発注した[21]
活用事例の主流は「訓練」や「研究開発」であり、武器の運用環境が過酷な実戦用の技術はまだほとんど例がない[22]。
注釈
出典
- ^ a b c d e f g h i “仮想現実ソリューション Augmented Reality(拡張現実)”. NTTコミュニケーションズ 2021年11月28日閲覧。
- ^ “VRやARとどこが違う? MR(複合現実)の仕組みと代表例『Microsoft HoloLens』を解説”. TIME&SPACE. KDDI (2017年3月16日). 2021年11月28日閲覧。
- ^ “XRとは”. NTTドコモ. (2021年8月12日) 2021年11月28日閲覧。
- ^ a b c d e ムコハタワカコ (2021年5月27日). “もっと知りたい! Pickup スマートワーク用語 第6回 VR・AR・MR・SR・XR”. スマートワーク総研. ダイワボウ情報システム. 2021年11月28日閲覧。
- ^ a b c “注目の「XR」(クロスリアリティ)とは? VR、AR、MRとの違いと最新事例を紹介”. TIME&SPACE. KDDI (2018年8月16日). 2021年11月28日閲覧。
- ^ a b c d e “ARとVRの違いを改めて解説! - 目指すは"電脳コイル"と"ソードアート・オンライン" (1/4)”. ASCII.jp×デジタル. 角川アスキー総合研究所 (2016年12月9日). 2021年12月9日閲覧。
- ^ a b c “ARやVRとは? さらにMRやXRまで!? 何がどう違うのか改めて解説だ! (1/5)”. アスキー. 角川アスキー総合研究所 (2018年2月26日). 2021年12月9日閲覧。
- ^ a b “ARとVRの違いを改めて解説! - 目指すは"電脳コイル"と"ソードアート・オンライン" (2/4)”. ASCII.jp×デジタル. 角川アスキー総合研究所 (2016年12月9日). 2021年12月9日閲覧。
- ^ “ARやVRとは? さらにMRやXRまで!? 何がどう違うのか改めて解説だ! (3/5)”. アスキー. 角川アスキー総合研究所 (2018年2月26日). 2021年12月9日閲覧。
- ^ a b c d e “ARやVRとは? さらにMRやXRまで!? 何がどう違うのか改めて解説だ! (4/5)”. アスキー. 角川アスキー総合研究所 (2018年2月26日). 2021年12月9日閲覧。
- ^ a b “ARやVRとは? さらにMRやXRまで!? 何がどう違うのか改めて解説だ! (5/5)”. アスキー. 角川アスキー総合研究所 (2018年2月26日). 2021年12月9日閲覧。
- ^ a b c d e f g h i j “創業@中国 「ドラゴンボールのスカウター」を作った男 鯖江の技術も生きる”. (2020年8月4日) 2021年12月9日閲覧。
- ^ a b “ARとVRの違いを改めて解説! - 目指すは"電脳コイル"と"ソードアート・オンライン" (3/4)”. ASCII.jp×デジタル. 角川アスキー総合研究所 (2016年12月9日). 2021年12月9日閲覧。
- ^ a b c Greg Nichols (2018年8月1日). “3 unexpected ways you'll soon find AR/VR in healthcare” (英語). ZDNet. Red Ventures]. 2021年11月28日閲覧。
- ^ a b c “ARやVRが医療の可能性を広げる時代が到来!”. Medical DX. 株式会社オプティム (2020年8月15日). 2021年11月28日閲覧。
- ^ a b c d e f g h i j k “遠隔手術、開発はここまで来た 「ダビンチ」の次を目指す国産ロボットも”. 朝日新聞. (2021年12月4日) 2021年12月7日閲覧。
- ^ “医療分野における拡張現実・仮想現実の世界市場は、2027年まで年平均成長率26.57%で成長する見込み Report Ocean”. PR TIMES (2021年10月5日). 2021年11月28日閲覧。
- ^ a b c 井上孝司 (2020年8月22日). “軍事でも使われ始めたxR技術(4)ARの活用事例”. マイナビニュース. マイナビ. 2021年11月28日閲覧。
- ^ “ARの軍事利用 米陸軍の「戦術拡張現実(T.A.R.)」”. MoguraVR. 株式会社Mogura (2017年7月8日). 2021年11月28日閲覧。
- ^ “マイクロソフト、「HoloLens 2」ベースの軍事用ARヘッドセット12万台を受注”. CNET Japan. 朝日インタラクティブ (2021年4月1日). 2021年11月28日閲覧。
- ^ 井上孝司 (2020年9月5日). “軍事でも使われ始めたxR技術(6)xRが実戦で活用が進まない理由”. マイナビニュース. マイナビ. 2021年11月28日閲覧。
- ^ a b c “ケータイ用語の基礎知識 第431回:拡張現実(AR)とは”. ケータイ Watch. インプレス (2009年7月28日). 2021年12月7日閲覧。
- ^ a b “稲見昌彦 東大教授VRインタビュー 『電脳コイル』は必修です (2/2)”. KAI-YOU.net. 株式会社カイユウ (2016年8月16日). 2021年12月7日閲覧。
- ^ a b “近未来社会の枠組みとインフラを構想する対談 「『スノウ・クラッシュ』から『電脳コイル』へ」”. 4Gamer.net (2008年3月1日). 2021年12月7日閲覧。
- ^ a b 「特集■第13回大会 特別セッション アニメ『電脳コイル』にみるリアルとバーチャルの接点〜複合現実感の未来実現形態を探る」『日本バーチャルリアリティ学会誌』第13巻第4号、日本バーチャルリアリティ学会、2008年12月、6-19頁、2021年12月7日閲覧。}
- ^ 『ARのすべて-ケータイとネットを変える拡張現実』日経BP、2009年、10頁頁。ISBN 978-4822210830。
- ^ “電脳コイル・磯監督とセカイカメラ・井口代表が語る、新しい現実”. アスキー. 角川アスキー総合研究所 (2009年4月24日). 2021年12月7日閲覧。
- ^ “アマゾンプライムに『電脳コイル』降臨! ほのぼのSFアニメと見せかけてじつはトラウマシーンの宝庫!?”. ファミ通.com. KADOKAWA (2020年6月14日). 2021年12月7日閲覧。
- ^ a b “サイエンスフューチャーの創造者たち技術に「希望を見いだしたい」――「東のエデン」神山監督×セカイカメラ井口氏”. ITmedia NEWS. アイティメディア (2010年5月21日). 2021年12月7日閲覧。
- ^ “「東のエデン」AR技術を駆使した舞台挨拶に拍手喝さい”. 映画.com. 株式会社エイガ・ドット・コム (2010年1月10日). 2021年12月7日閲覧。
- ^ a b “「ケータイ+AR」の現在と未来 話題の拡張現実「AR」って何?”. ケータイ Watch. インプレス (2009年10月9日). 2021年12月7日閲覧。
- ^ Johnson, Joel. “The Master Key”: L. Frank Baum envisions augmented reality glasses in 1901 Archived 2013年1月12日, at Archive.is Mote & Beam 10 September 2012
- ^ https://www.google.com/patents?q=3050870
- ^ Tom Caudell. Ece.unm.edu. Retrieved 9 June 2012.
- ^ L. B. Rosenberg. The Use of Virtual Fixtures As Perceptual Overlays to Enhance Operator Performance in Remote Environments. Technical Report AL-TR-0089, USAF Armstrong Laboratory, Wright-Patterson AFB OH, 1992.
- ^ L. B. Rosenberg, "The Use of Virtual Fixtures to Enhance Operator Performance in Telepresence Environments" SPIE Telemanipulator Technology, 1993.
- ^ Wellner, Pierre. “Computer Augmented Environments: back to the real world”. ACM. 2012年7月28日閲覧。
- ^ 拡張現実(AR)はモバイルへ:各種プロジェクトを紹介
- ^ Simon Perry (2008年10月23日). “Wikitude: Android App With Augmented Reality: Mind Blowing”. digital-lifestyles.info 2008年10月23日閲覧。
- ^ Daniel Wagner (2009年8月6日). “History of Mobile Augmented Reality”. Institute for Computergraphics and Vision 2009年8月6日閲覧。
- ^ Wagner, Daniel (2009年9月29日). “First Steps Towards Handheld Augmented Reality”. ACM. 2009年9月29日閲覧。
- ^ 「AR技術による喪の空間の創造 ni_kaのAR詩について」『DOMMUNE OFFICIAL GUIDE BOOK2』河出書房新社 2011年 p49-50
- ^ 「ni_kaの「AR詩」」『Web Designing』2012年6月号 マイナビ p43
- 拡張現実のページへのリンク