輻射と冷却
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/11/14 00:25 UTC 版)
白色矮星の大部分を占める縮退した物質は、非常に不透明度(英語版)が小さい。これは、光子を吸収する際には電子は空いているより高い準位へと遷移する必要があり、光子のエネルギーがその電子にとって可能な量子状態と一致しなければその遷移が不可能である可能性があるからであり、そのため白色矮星内での輻射による熱輸送の効率は低い。しかし、熱伝導率は高くなる。結果として、白色矮星の内部はおよそ 107 K の一様な温度に保たれる。縮退していない物質でできている外殻は、107 K から 104 程度にまで冷える。この物質はおおむね黒体としての輻射を行う。白色矮星の形成後、通常の物質からなる希薄な大気外層はおよそ 107 K で輻射を始め、質量の大部分を占める内部は 107 K であるが外側の通常の物質でできた殻を通して放射することができないため、白色矮星は長い間にわたって放射を続けることができる。 白色矮星から放射される可視の放射は、O型主系列星の青白色からM型の赤色矮星の赤色まで、広い色の範囲を変化する。白色矮星の有効表面温度は、高いものは 150,000 K、低いものは 4,000 K をわずかに下回る程度にまで及ぶ。シュテファン=ボルツマンの法則に従い、天体の光度は表面温度が高いほど大きくなる。この表面温度の範囲は、白色矮星の光度は太陽の100倍を超えるものから 1/10,000 を下回るものまで存在することに対応している。表面温度が 30,000 K を超えるような高温の白色矮星は、軟X線 (比較的低エネルギーなX線) の放射源であることが観測されている。これにより、白色矮星大気の組成と構造を軟X線および極端紫外線での観測によって研究することが可能となる。 また、白色矮星はウルカ過程を介してニュートリノも放射している。 1952年に Leon Mestel によって説明されたように、白色矮星は伴星やその他の供給源から物質を降着していない限り、その放射は天体に蓄えられた熱が起源であり、その熱は補給されることはない:§2.1。白色矮星は熱を放射するための表面積が極めて小さいため冷却はゆっくりとしたものとなり、長い時間にわたって高温であり続ける。白色矮星が冷えるに従って表面温度は低下し、放射する光は赤くなり、そして光度は減少する。白色矮星は放射以外でエネルギーを失う手段を持たないため、時間の経過とともに冷却は遅くなる。例として、水素大気を持つ0.59太陽質量の炭素白色矮星の冷却の経過は以下のように推定されている。この天体は最初に表面温度が 7,140 K まで冷えるのにおよそ15億年の時間を要した後、さらにおよそ 500 K 冷えて 6,590 K になるのには約3億年を要する。しかしその後およそ 500 K 冷えて 6,030 K になるには4億年、さらに約 500 K 冷えて 5,550 K となるには11億年の経過が必要である:表2。 観測された白色矮星の大部分は 8,000 K から 40,000 K の比較的高い表面温度を持つ。しかし白色矮星は高温でいる期間よりもより低温でいる期間の方が長いため、高温の白色矮星よりも低温の白色矮星の方が多く存在することが予測される。より高温で明るい白色矮星は観測されやすいという観測選択効果を考えると、調査する温度領域を低くすることでより多くの白色矮星が発見されるという傾向がある。この傾向は、非常に低温な白色矮星に到達したところで終わる。表面温度が 4,000 K を下回る白色矮星はいくつか発見されており、観測されている中で最も低温な白色矮星のひとつである WD 0346+246(英語版) は表面温度が 3,900 K である。この傾向が終わるのは、宇宙の年齢が有限であることが理由である。すなわち、白色矮星がこの温度を下回るほどまだ十分な時間が経過していないということである。そのため、白色矮星の光度関数を用いるとその領域で恒星が形成され始めた時期を推定することができる。この手法を用いて推定された銀河系の銀河円盤の年齢は80億年である。白色矮星は何兆年もの時間をかけて、周囲および宇宙マイクロ波背景放射とおおむね熱平衡の、放射を行わない黒色矮星になる。ただし十分な時間が経過していないため、黒色矮星はまだ存在していないと考えられている。 白色矮星を構成する物質は、初めは原子核と電子からなる流体であるプラズマであるが、冷却の後期段階では天体の中心から結晶化を起こすことが1960年代に理論的に予測された。結晶構造は体心立方格子構造であると考えられる。1995年には脈動白色矮星の星震学観測によって結晶化理論の検証を行える可能性があることが示唆され、2004年にはケンタウルス座V886星の質量のおよそ90%が結晶化を起こしていることを示唆する観測結果が得られている。別の研究では結晶化を起こしているのは質量の32%から82%だとしている。白色矮星の核が結晶化を起こして固体に変化するに従って潜熱が解放され、これは白色矮星の冷却を遅らせる熱エネルギー源となる。この効果は、ガイアによる観測で15000個を超える白色矮星の冷却シーケンスに停滞が見られることが同定されたことにより、2019年に初めて確認された。 質量が0.20太陽質量未満の低質量のヘリウム白色矮星はしばしば超低質量白色矮星 (英: extremely low-mass white dwarfs, ELM WDs) と呼ばれ、連星系で形成される。これらの天体は水素豊富な外層を持つため、CNOサイクルを介した残余の水素燃焼が長い期間にわたって白色矮星を高温に保つ可能性がある。さらにこれらの白色矮星は、冷却経路に到達する前に最大で20億年もの間、膨張した前白色矮星段階に留まると考えられている。
※この「輻射と冷却」の解説は、「白色矮星」の解説の一部です。
「輻射と冷却」を含む「白色矮星」の記事については、「白色矮星」の概要を参照ください。
- 輻射と冷却のページへのリンク