神の粒子
素粒子の一種、「ヒッグス粒子」の別名の一つ。L・M・レーダーマンの著書、『The God Particle』に由来する。ヒッグス粒子が長らく未知の存在であり、宇宙の起源に迫れる可能性を持つ大きな謎とされたことから、「神の粒子」の呼び名が一般に定着することとなった。2013年に欧州合同原子核研究所(CERN)を中心とする研究グループが、ヒッグス粒子の発見を論文にまとめて発表し、このことは「神の粒子の発見」として大きく報じられた。
神の粒子
ヒッグス粒子
ヒッグス粒子 | |
---|---|
![]() シミュレーション画像。仮説に基づいて、LHCのCMS素粒子検出器内で起きる可能性があると計算されることを描画してみたもの。 | |
分類 | ボーズ粒子 |
グループ | ヒッグス粒子 |
ゲージ | SU(2)L×U(1)Y |
理論化 | ピーター・ウェア・ヒッグス(1964) |
発見 | 2011年 |
記号 | H |
電荷 | 0 |
スピン | 0 |
ヒッグス粒子(ヒッグスりゅうし、英語: Higgs boson (英語発音)/hɪgz ˈbəʊzɒn/ ヒッグス・ボソン)は素粒子の一種。
一部の粒子の質量の起源を説明する理論であるヒッグス機構において存在が予想された素粒子であり、2011年以降にヒッグス粒子の存在が観測されたため、ヒッグス機構の正しさが示された。
ヒッグス自身はヒッグス粒子を「so-called Higgs boson(いわゆる ヒッグス粒子と呼ばれているもの)」と呼んでおり、他にも様々な呼称がある。

概要
ウィークボソンをはじめとするいくつかの粒子の質量の起源を説明するため、1964年にエディンバラ大学のピーター・ウェア・ヒッグスは、自発的対称性の破れの考えに基づいた理論を提唱した。この理論はヒッグス機構と呼ばれる。
ヒッグス機構においては、ヒッグス場と呼ばれるスカラー場が導入され、それに対応するスカラー粒子も同時に導入される[注 1]。これをヒッグス粒子と呼ぶ。ヒッグス粒子はスピン0・電荷0 のボース粒子である。
ヒッグス機構を含む理論模型が現実に即しているかどうかを判定する上で、その模型に対応するヒッグス粒子が存在するかどうかの実験的検証が鍵となる。ヒッグス粒子という言葉は、広い意味ではヒッグス機構において現れる粒子のことであるが、特に標準模型(ワインバーグ=サラム理論)のヒッグス粒子を指して使われる場合が多い。標準模型においては、ウィークボソン(W±,Z)はヒッグス機構により質量を獲得しているとされており、クォークやレプトンもヒッグス場との相互作用を通して質量を得ているとされている。
ヒッグス機構
ヒッグス機構とは、ピーター・ヒッグスが1964年に提唱した、ゲージ対称性の自発的破れに関する理論である[1]。この理論の下では、南部・ゴールドストーン粒子は物理的には現れず、その自由度はゲージ場の縦成分として吸収され、ゲージ場はベクトル粒子としてふるまうことになる[1]。この理論は、質量をもつベクトル粒子を、きわめて基本的な対称性に基づいたゲージ場として解釈することを可能にする[1]。つまり、ヒッグス機構は質量の起源について合理的な説明を与えることができる。
この理論では、「真空」と同じ量子数を持つスカラー粒子が現れる、とされるので、この仮説が正しいものだと証明するためには、このいわゆる「ヒッグス粒子」を実験的に見つけることが課題になる[1]。
なお、似たようなメカニズムは、ブリュッセル自由大学のロベール・ブルー (Robert Brout) とフランソワ・アングレールも1964年に、ヒッグスとは独立に提唱していた。
ヒッグス機構では、宇宙の初期の状態においては全ての素粒子は自由に動き回ることができ、質量を持たなかったが、低温状態となるにつれ、ヒッグス場に自発的対称性の破れが生じ、真空期待値が生じた(真空に相転移が起きた)と考える。これによって、他のほとんどの素粒子がそれに当たって抵抗を受けることになった。これが素粒子の動きにくさ、すなわち質量となる。質量の大きさとは、真空期待値が生じたヒッグス場と物質との相互作用の強さであり、ヒッグス場というプールの中に物質が沈んでいるから質量を獲得できると見なす。光子はヒッグス場からの抵抗を受けないため相転移後の宇宙でも自由に動き回ることができ、質量がゼロであると考える。
ヒッグス粒子の存在が意味を持つのは、ビッグバン、真空の相転移から物質の存在までを説明する標準理論の重要な一部を構成するからでもある。もしヒッグス粒子の存在が否定された場合は、標準理論(および宇宙論)は大幅な改訂を迫られることになる。
マスメディアによるニュース報道等では「対称性の破れが起こるまでは質量という概念自体が存在しなかった」などと紹介されることがあるが、これは正確ではない。電荷、フレーバー、カラーを持たない粒子、標準模型の範囲内ではヒッグス粒子それ自体および右巻きニュートリノはヒッグス機構と関係なく質量を持つことが出来る。また、重力と質量の関係、すなわち重力質量発生の仕組みは空間の構造によって定められるものであり、標準模型の外部である一般相対性理論、もしくは量子重力理論において重力子の交換によって説明されると期待される[要出典]。
標準模型
標準模型のうち、電弱相互作用を説明する部分のワインバーグ=サラム模型においてヒッグス機構が用いられている。ワインバーグ=サラム模型はウィークボソンに質量があることが無理なく説明でき、しかもWボソンとZボソンの質量比が実験結果と一致するため、素粒子の標準模型の主要な部分をなしている。
標準模型のヒッグス場は SU(2)L×U(1)Y の下で
イギリスの新聞『ガーディアン』の科学担当記者が他の呼称を募集したが、応募された多くの候補の中から選ばれた最も妥当な名前は「シャンパン・ボトル・ボソン」である。ヒッグス・ポテンシャルの形がシャンパン・ボトルの底(パント)の形状に似ているためで、物理の講義でもよく説明に使われる。「シャンパン・ボトル・ボソン」という呼称は「神の粒子」という呼称ほどにはインパクトはないが、覚えやすく、多くの物理学的議論に関連がある[22]。シャンパン・ボトルの底の形は、例えば、ハドロンに質量を与える南部理論(カイラル対称性の自発的破れ)に現れる。また、カイラル対称性の自発的破れのアイディアは、南部が超伝導の理論であるBCS理論に触発されたものだが、BCS理論に出てくるポテンシャルもシャンパン・ボトルの形である。
脚注
注釈
出典
参考文献
関連項目
外部リンク
ウィキニュースに関連記事があります。ヒッグス粒子、「発見の兆候」 - 欧州の研究機関 (2011年12月14日)
- 神の粒子のページへのリンク