素励起
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/07/19 07:13 UTC 版)
![]() |
この記事のほとんどまたは全てが唯一の出典にのみ基づいています。(2012年12月)
|
素励起(それいき、英: elementary excitation)とは、量子力学における基本的な励起のこと。一般に、多体系の励起状態は素励起の複合と考えることができる[1]。
概要
マクロな物質の物性とは、与えられた摂動(外場、外力)に対する応答、つまり摂動による励起のことである。 統計力学によると、この励起は最低エネルギー状態からの秩序の乱れであり、乱れの程度はエントロピーで表される。 ここでこの乱れが小さいと仮定する。 するとこの乱れはさまざまな波長、周波数の乱れの一次結合で表されるだろう。 一次結合が成り立つということは重ね合わせの原理なので、乱れは波動として扱える。 量子論によると波動と粒子には等価性であるため、乱れ(つまり励起)は「ある種の粒子の集団」として振る舞う。 この場合の「ある種の粒子」のことを素励起と呼ぶ。[2]
分散関係
基底状態にある多体系が素励起に相当する励起状態になった時、この多体系の運動量がpとなり、エネルギーがεだけ増加したとすると、この素励起の運動量はpでエネルギーはεであるという。εはpについての関数で、その関係をε=ε(p) と書く時、これを分散関係という。
素励起は、その集団を量子統計力学で扱うときに、フェルミ統計に従うものとボース統計に従うものがある。素励起という概念は、準粒子という概念と全く同等か、または密接に関係して使われる[1]。
素励起の例
集団励起型
素励起の簡単な例として、まず調和振動子系の運動を考える。多数の質点が調和ポテンシャルによる力によって相互作用しているとき、個々の質点の運動は一般に非常に複雑であるが、基準座標を使うと、基準振動子と呼ばれる互いに独立な調和振動子の集合として書かれる。この基準振動を量子化したものがフォノンという準粒子であり、1個のフォノンに相当する基準振動の励起が素励起である[1]。この種の素励起は、調和振動子の各質点の個別的自由度の運動とは対応せず、一般にフォノンの総数は、フォノンを励起する物質の構成粒子の数とは無関係である。また素励起の運動量は、各質点のもつ力学的運動量とは無関係に、基準振動の波動ベクトルを
素励起と同じ種類の言葉
- 素励起のページへのリンク