重ね合わせの原理とは? わかりやすく解説

Weblio 辞書 > 同じ種類の言葉 > 人文 > 概念 > 原理 > 重ね合わせの原理の意味・解説 

かさねあわせ‐の‐げんり〔かさねあはせ‐〕【重ね合(わ)せの原理】

読み方:かさねあわせのげんり

二つ上の波が、ある点を同時に通過するときの変位は、それぞれの変位ベクトルの和で与えられるという原理重畳(ちょうじょう)原理


重ね合わせの原理

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/03/05 17:48 UTC 版)

遠い波源から伝わってきた平面波的な波(斜めの筋)と、マガモが作る航跡波の重ね合わせ。水面波において、線形性は波長と比べて振幅が小さい波に対してのみ近似的に成り立つ。

物理学およびシステム理論における重ね合わせの原理[1](かさねあわせのげんり、: superposition principle[2])とは、線形な系一般に成り立つ特徴的な原理。二つ以上の入力が同時に与えられた時に系が返す応答が、それぞれの入力が単独に加えられた場合に返される応答の総和となることをいう。つまり、入力 A に対して応答 X が返され、入力 B に対して応答 Y が返されるならば、入力 ( A + B ) に対して返される応答は ( X + Y ) である。

重ね合わせの原理が成り立つためには、加法性および斉次性の二つの性質が必要十分である。以下のような性質を持つ写像(線形写像)はそのような性質を持つものの一つである。

同じ媒質を逆方向に伝播する二つの波を線形に重ね合わせた様子。このアニメーションのように二つの波が等しい波長・振幅を持っていた場合、定常波が作られる。

通常、波はあるパラメータの時間的・空間的な変動として記述される。あるパラメータとは、水波では水面の高さ、音波では圧力、光波では電磁場である。パラメータの平衡値からのずれをここでは変位と呼ぶ。与えられた時間・空間に対して変位の値を返す関数が波である。

いかなる物理系においても、ある時刻における波形(変位の空間分布)は、波源(波動に影響を与える外力など)の条件および初期条件(初めの波形)のもとで微分方程式を解いて求められる。多くの場合(古典的な波動方程式など)、波動を記述する方程式は線型性を持っており、重ね合わせの原理が成り立つ。つまり、同一の空間を二つ以上の波が伝播するとき、合成波の変位は個々の波が独立に作る変位の和となる。たとえば、二つの波が直線上を互いに逆方向に進んでいるとき、それぞれの波は互いに影響を与え合うことなくすれ違いながらパラメータを変動させていく(図参照)。

波の干渉

干渉という現象は波の重ね合わせに基づいている。二つ以上の波が同一の空間を進んでいるとき、空間各点における正味の変位は個々の波が作る変位の和となる。ノイズキャンセリングヘッドホン英語版などでは合成波の振幅は個々の成分よりも小さくなる。このような場合を「弱め合う干渉」と呼ぶ。他方でラインアレイスピーカー英語版などでは合成波の振幅が個々の成分より大きくなる。この場合「強め合う干渉」と呼ばれる。

合成波
波 1
波 2

波1と2が同相
(強め合う干渉)
波1と2が逆相
(弱め合う干渉)

回折か、干渉か

リチャード・ファインマンは『ファインマン物理学』において、波の干渉と回折はどちらも重ね合わせから生じるものであって、本質的な違いはないと述べた[3]。少数の波源からの波の重ね合わせを論じるときは慣習的に「干渉」が用いられ、波源が多数であれば「回折」と呼ばれがちであるに過ぎない。この論を進めれば、干渉と回折は同一の効果の両極だといえる[4]。はっきり区別できる少数のコヒーレントな波源の重ね合わせは干渉と呼ばれ、一つの波面を無数のコヒーレントな波源の重ね合わせとして表すとき、その効果は回折と呼ばれる。

一方で、干渉と回折という概念が不分明なのは波面の分割振幅の分割の区別が意識されていないためだ、という主張も存在する[5]ヤングの二重スリット実験フラウンホーファー回折のように、一つの波の波面を分割して作った複数のコヒーレントな波源を干渉させる場合、それは回折に近い。これに対し、マイケルソン干渉計のように振幅を分割して作ったコヒーレントな波源を干渉させる場合、回折と見なされることはまれである。

線型性からの逸脱

現実に近い物理モデルの多くは、波の支配方程式は近似的にしか線型ではない。そのようなシチュエーションでは重ね合わせの原理も近似的にしか成り立たないが、波の振幅が小さいほど近似の精度が高くなるという規則が存在する。重ね合わせの原理が成り立たないときに起きる現象の例については、非線形光学および非線形音響学の項目を参照のこと。

量子的な重ね合わせ

量子力学では、ある種の波の伝播や振る舞いを計算することが最重要な問題である。この波は波動関数によって表され、その振る舞いを規定する方程式はシュレーディンガー方程式と呼ばれる。ある波動関数の振る舞いを計算する基本的なアプローチは、定常状態と呼ばれるシンプルな性質を持つ波動関数を複数(時には無限個)重ね合わせたものとして書き表すことである。シュレーディンガー方程式は線形なので、問題の波動関数の振る舞いは定常状態の振る舞いの重ね合わせとして計算できる[6]

量子力学的な状態はヒルベルト空間のベクトルだと見なされることが多い[7]。しかし、量子状態を基底ベクトル等のベクトルの重ね合わせとして表す場合、重ね合わされたベクトル間の相対位相にのみ物理的意味があると考えられており、ある状態に絶対値1の複素位相因子 e をかけても同じ状態だと解釈される[1]。また、向きは同じで絶対値のみが異なるベクトルは同じ量子状態を表す。つまり、量子状態はベクトルではなく、ヒルベルト射影空間英語版の元、すなわち射線で表される[7]。射線とはあるベクトルを複素定数倍したものをすべて同値と見なす同値類である。ただし、量子状態を重ね合わせる場合には相対位相が異なる重ね合わせは異なる量子状態となるため、位相情報を失った射線の間に「重ね合わせ」は定義できず[8]、適当な位相を持ったベクトルを用いる必要がある。実際ディラックは、射線ではなく位相を持ったブラベクトルやケットベクトルを重ね合わせることによって量子状態を表現している[9]。それにもかかわらずディラックは射線の考えに基づき「量子力学において見られる重ね合わせは、古典理論における重ね合わせとは本質的に異なった性質を持つ」[9]と述べているが、例えば、偏光状態を表すブロッホ球(ポワンカレ球)は古典偏光状態も量子偏光状態(量子ビット状態)も表すことができ、古典偏光状態と量子ビット状態は一対一に対応する。

境界値問題

よく見られるタイプの境界値問題は、抽象的に表せば、境界条件


ウィキペディアウィキペディア

重ね合わせの原理

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/03/05 00:38 UTC 版)

線型方程式」の記事における「重ね合わせの原理」の解説

斉次方程式の持つ線型性から、X, Y がその方程式の解ならばその一次結合 αX + βY もやはりその方程式の解となる。このことを指して重ね合わせの原理が成り立つという。斉次でない方程式も、一つ特殊解が見つかれば、ほかの解はその方程式属す斉次方程式の解を加えることにより得られる。 したがって線型方程式の解の全体一つベクトル空間(あるいはアフィン空間)をつくる。これを方程式の解空間という。

※この「重ね合わせの原理」の解説は、「線型方程式」の解説の一部です。
「重ね合わせの原理」を含む「線型方程式」の記事については、「線型方程式」の概要を参照ください。

ウィキペディア小見出し辞書の「重ね合わせの原理」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ

辞典・百科事典の検索サービス - Weblio辞書辞典・百科事典の検索サービス - Weblio辞書

「重ね合わせの原理」の例文・使い方・用例・文例

Weblio日本語例文用例辞書はプログラムで機械的に例文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。



重ね合わせの原理と同じ種類の言葉


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

カテゴリ一覧

すべての辞書の索引



Weblioのサービス

「重ね合わせの原理」の関連用語

1
合成波 デジタル大辞泉
100% |||||

2
同位相 デジタル大辞泉
100% |||||

3
状態ベクトル デジタル大辞泉
100% |||||

4
逆位相 デジタル大辞泉
100% |||||

5
量子効果 デジタル大辞泉
96% |||||






重ね合わせの原理のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



重ね合わせの原理のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
デジタル大辞泉デジタル大辞泉
(C)Shogakukan Inc.
株式会社 小学館
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの重ね合わせの原理 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaの線型方程式 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。
Tanaka Corpusのコンテンツは、特に明示されている場合を除いて、次のライセンスに従います:
 Creative Commons Attribution (CC-BY) 2.0 France.
この対訳データはCreative Commons Attribution 3.0 Unportedでライセンスされています。
浜島書店 Catch a Wave
Copyright © 1995-2025 Hamajima Shoten, Publishers. All rights reserved.
株式会社ベネッセコーポレーション株式会社ベネッセコーポレーション
Copyright © Benesse Holdings, Inc. All rights reserved.
研究社研究社
Copyright (c) 1995-2025 Kenkyusha Co., Ltd. All rights reserved.
日本語WordNet日本語WordNet
日本語ワードネット1.1版 (C) 情報通信研究機構, 2009-2010 License All rights reserved.
WordNet 3.0 Copyright 2006 by Princeton University. All rights reserved. License
日外アソシエーツ株式会社日外アソシエーツ株式会社
Copyright (C) 1994- Nichigai Associates, Inc., All rights reserved.
「斎藤和英大辞典」斎藤秀三郎著、日外アソシエーツ辞書編集部編
EDRDGEDRDG
This page uses the JMdict dictionary files. These files are the property of the Electronic Dictionary Research and Development Group, and are used in conformance with the Group's licence.

©2025 GRAS Group, Inc.RSS