葉圏とは? わかりやすく解説

よう‐けん〔エフ‐〕【葉圏】

読み方:ようけん

植物の内部表面。特に真菌類などの生息領域としての部位を指す。


葉圏

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/11/11 09:14 UTC 版)

葉圏(ようけん、: Phyllosphere)とは微生物学の専門用語の一つであり、微生物の生息地としての、植物における地面から上の部位全体である[1][2]


  1. ^ a b Last, F.T. (1955). “Seasonal incidence of Sporobolomyces on cereal leaves”. Trans Br Mycol Soc 38: 221–239. doi:10.1016/s0007-1536(55)80069-1. 
  2. ^ a b Ruinen, J. (1956). “Occurrence of Beijerinckia species in the phyllosphere.”. Nature 178: 220–221. doi:10.1038/177220a0. 
  3. ^ a b c d 須田亙、宍戸雅宏「植物葉圏における細菌群集の解析」『土と微生物』第63巻第2号、2009年、 93-99頁、 doi:10.18946/jssm.63.2_93NAID 110009468643
  4. ^ T. M. Timms-Wilson, K. Smalla et al.: Microbial Diversity in the Phyllosphere and Rhizosphere of Field Grown Crop Plants: Microbial Specialisation at the Plant Surface. In: M. J. Bailey, A. K. Lilley et al. (Hrsg.): Microbial Ecology of Aerial Plant Surfaces. CAB International, Wallingford/Oxfordshire 2006, ISBN 978-1845930615, p21–36.
  5. ^ F. T. Last: Seasonal incidence of Sporobolomyces on cereal leaves. Transactions of the British Mycological Society 38, 1955, p221–239.
  6. ^ Jakoba Ruinen: Occurrence of „Beijerinckia“ species in the phyllosphere. Nature 177, 1956, p220–221.
  7. ^ L. Hiltner (1904). “Über neuere Erfahrungen und Probleme auf dem Gebiete der Bodenbakteriologie unter besonderer Berücksichtigung der Gründüngung und Brache”. Arbeiten der Deutschen Landwirtschaftlichen Gesellschaft 98: 59-78. 
  8. ^ Wilhelm Gemoll: Griechisch-Deutsches Schul- und Handwörterbuch. München/Wien 1965.
  9. ^ C. E. Morris, L. L. Kinkel: Fifty years of phyllosphere microbiology: Significant contributions to research in related fields. In: Steven E. Lindow, Eva I. Hecht-Poinar, Vern J. Elliot (Hrsg.): Phyllosphere microbiology. APS Press, St. Paul, Minn., 2002, ISBN 978-0-89054-286-6, S. 365–375.
  10. ^ a b Nathanaël Delmotte, Claudia Knief et al.: Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proceedings of the National Academy of Sciences 38, 2009, S. 16428–16433, online
  11. ^ a b c Steven E. Lindow, Maria T. Brandl: Microbiology of the phyllosphere. Applied and Environmental Microbiology 69, 2003, S. 1875–1883, online
  12. ^ Yasuyuki Hashidoko (2005). “Ecochemical Studies of Interrelationships between Epiphytic Bacteria and Host Plants via Secondary Metabolites”. Bioscience, Biotechnology, and Biochemistry 69 (8): 1427-1441. doi:10.1271/bbb.69.1427. http://www.tandfonline.com/doi/abs/10.1271/bbb.69.1427. 
  13. ^ a b G. A. Beattie; S. E. Lindow (September 1995). “The Secret Life of Foliar Bacterial Pathogens on Leaves”. Annual Review of Phytopathology 33: 145-172. doi:10.1146/annurev.py.33.090195.001045. http://www.annualreviews.org/doi/abs/10.1146/annurev.py.33.090195.001045. 
  14. ^ Wilhelm Barthlott, Christoph Neinhuis et al.: Classification and terminology of plant epicuticular waxes. Botanical Journal of the Linnean Society 126 (3), 1998, S. 237–260.
  15. ^ a b c Steven E. Lindow; Maria T. Brandl (2003). “Microbiology of the Phyllosphere”. Applied and environmental microbiology 69 (4): 1875-1883. doi:10.1128/AEM.69.4.1875-1883.2003. http://aem.asm.org/content/69/4/1875.short. 
  16. ^ Susan S. Hirano; Christen D. Upper (Sep 2000). “Bacteria in the Leaf Ecosystem with Emphasis on Pseudomonas syringae—a Pathogen, Ice Nucleus, and Epiphyte”. Microbiology and molecular biology 64 (3): 624-653. doi:10.1128/MMBR.64.3.624-653.2000. http://mmbr.asm.org/content/64/3/624.short. 
  17. ^ a b Junichiro Enya; Hirosuke Shinohara; Shigenobu Yoshida; Takao Tsukiboshi; Hiromitsu Negishi; Seiya Tsushima; Kazuo Suyama (2007). “Culturable Leaf-Associated Bacteria on Tomato Plants and Their Potential as Biological Control Agents”. Microbial Ecology 53 (4): 524-536. doi:10.1007/s00248-006-9085-1. http://link.springer.com/article/10.1007/s00248-006-9085-1. 
  18. ^ William F. Fett; Stanley F. Osman; Michael F. Dunn (Aug 1987). “Auxin Production by Plant-Pathogenic Pseudomonads and Xanthomonads”. Applied and Environmental 53 (8): 1839-1845. ISSN 1098-5336. http://aem.asm.org/content/53/8/1839.short. 
  19. ^ Michael Fürnkranz; Wolfgang Wanek; Andreas Richter; Guy Abell; Frank Rasche; Angela Sessitsch (2008). “Nitrogen fixation by phyllosphere bacteria associated with higher plants and their colonizing epiphytes of a tropical lowland rainforest of Costa Rica”. The ISME Journal 2: 561–570. doi:10.1038/ismej.2008.14. http://www.nature.com/ismej/journal/v2/n5/abs/ismej200814a.html. 
  20. ^ a b Amarjyoti Sandhu; Larry J. Halverson; Gwyn A. Beattie (Feb 2009). “Identification and Genetic Characterization of Phenol-Degrading Bacteria from Leaf Microbial Communities”. Microbial Ecology 57 (2): 276-285. doi:10.1007/s00248-008-9473-9. http://link.springer.com/article/10.1007/s00248-008-9473-9. 
  21. ^ a b c Ching-Hong Yang; David E. Crowley; James Borneman; Noel T. Keen (March 27 2001). “Microbial phyllosphere populations are more complex than previously realized”. Proceedings of the National Academy of Sciences 98 (7): 3889-3894. doi:10.1073/pnas.051633898. http://www.pnas.org/content/98/7/3889.short. 
  22. ^ a b 百町 満朗, ed (2009年3月). 微生物と植物の相互作用―病害と生物防除. 東京: ソフトサイエンス社. ISBN 978-4881711200 
  23. ^ a b 渡邉 章乃, 佐藤 友美, 矢口 行雄 (2003). “樹木の葉における菌類の季節的変動 常緑性および落葉性広葉樹8種を事例として”. 第114回 日本林学会大会. doi:10.11519/jfs.114.0.362.0. https://doi.org/10.11519/jfs.114.0.362.0. 
  24. ^ O. Petrini. J.H.Andrews and S.S.Hirano. ed. “Fungal endophytes of tree leaves”. Microbial ecology of leaves: 179-197. 
  25. ^ a b c Wataru Suda; Michiei Oto; Seigo Amachi; Hirofumi Shinoyama; Masahiro Shishido (2008). “A Direct Method to Isolate DNA from Phyllosphere Microbial Communities without Disrupting Leaf Tissues”. Microbes and Environments 23 (3): 248-252. doi:10.1264/jsme2.23.248. https://doi.org/10.1264/jsme2.23.248. 
  26. ^ a b M. R. Lambais; D. E. Crowley; J. C. Cury; R. C. Büll; R. R. Rodrigues (2006). “Bacterial Diversity in Tree Canopies of the Atlantic Forest”. Science 312 (5782): 1917. doi:10.1126/science.1124696. http://science.sciencemag.org/content/312/5782/1917.short. 
  27. ^ Silke Ruppel; Angelika Krumbein; Monika Schreiner (August 2008). “Composition of the Phyllospheric Microbial Populations on Vegetable Plants with Different Glucosinolate and Carotenoid Compositions”. Microbial Ecology 56 (2): 364-372. doi:10.1007/s00248-007-9354-7. http://link.springer.com/article/10.1007/s00248-007-9354-7. 
  28. ^ H. Kadivar; A. E. Stapleton (June 2003). “Ultraviolet Radiation Alters Maize Phyllosphere Bacterial Diversity”. Microbial Ecology 45 (4): 353-361. doi:10.1007/s00248-002-1065-5. http://link.springer.com/article/10.1007%2Fs00248-002-1065-5?LI=true. 
  29. ^ Evelyn F. Jackson; Haley L. Echlin; Colin R. Jackson (1 November 2006). “Changes in the phyllosphere community of the resurrection fern, Polypodium polypodioides, associated with rainfall and wetting”. FEMS microbiology ecology 58 (2): 236-246. doi:10.1111/j.1574-6941.2006.00152.x. http://femsec.oxfordjournals.org/content/58/2/236.abstract. 
  30. ^ John H. Andrews; Charles M. Kenerley (1978). “The effects of a pesticide program on non-target epiphytic microbial populations of apple leaves”. Canadian Journal of Microbiology 24 (9): 1058-1072. doi:10.1139/m78-175. http://www.nrcresearchpress.com/doi/abs/10.1139/m78-175#.V6gzlriLTIU. 
  31. ^ Monika Walter; Christopher Miles Frampton; Kirsty Sarah Helen Boyd-Wilson; Patricia Harris-Virgin; Nicholas William Waipara (2007). “Agrichemical impact on growth and survival of non-target apple phyllosphere microorganisms”. Canadian Journal of Microbiology 53 (1): 45-55. doi:10.1139/w06-093. http://www.nrcresearchpress.com/doi/abs/10.1139/w06-093#.V6g0NriLTIU. 
  32. ^ José Granado; Barbara Thürig; Edith Kieffer; Liliane Petrini; Andreas Flieβbach (13 May 2008). “Culturable Fungi of Stored ‘Golden Delicious’ Apple Fruits: A One-Season Comparison Study of Organic and Integrated Production Systems in Switzerland”. Microbial Ecology 56 (4): 720-732. doi:10.1007/s00248-008-9391-x. http://link.springer.com/article/10.1007/s00248-008-9391-x. 
  33. ^ Baoguo Zhang; Zhihui Bai; Daniel Hoefel; Ling Tanga; Xiaoyi Wang; Baoju Li; Zuming Li; Guoqiang Zhuang (1 March 2009). “The impacts of cypermethrin pesticide application on the non-target microbial community of the pepper plant phyllosphere”. Science of The Total Environment 407 (6): 1915-1922. doi:10.1016/j.scitotenv.2008.11.049. http://www.sciencedirect.com/science/article/pii/S004896970801214X. 
  34. ^ Shuang Wang; Li-Yan Chang; Yong-Jun Wang; Qi Wang; Ching-Hong Yang; Ru-Hong Mei (1 May 2009). “Nanoparticles affect the survival of bacteria on leaf surfaces”. FEMS microbiology ecology 68 (2): 182-191. doi:10.1111/j.1574-6941.2009.00664.x. http://femsec.oxfordjournals.org/content/68/2/182.abstract. 
  35. ^ a b Baoguo Zhang; Zhihui Bai; Daniel Hoefel; Ling Tang; Zhiguang Yang; Guoqiang Zhuang; Jianzhou Yang; Hongxun Zhang (1 July 2008). “Assessing the impact of the biological control agent Bacillus thuringiensis on the indigenous microbial community within the pepper plant phyllosphere”. FEMS microbiology letters 284 (1): 102-108. doi:10.1111/j.1574-6968.2008.01178.x. http://femsle.oxfordjournals.org/content/284/1/102.abstract. 
  36. ^ Wataru Suda; Asami Nagasaki; Masahiro Shishido (2009). “Powdery Mildew-Infection Changes Bacterial Community Composition in the Phyllosphere”. Microbes and Environments 24 (3): 217-223. doi:10.1264/jsme2.ME09114. https://doi.org/10.1264/jsme2.ME09114. 
  37. ^ S. E. Lindow; C. Desurmont; R. Elkins; G. McGourty; E. Clark; M. T. Brandl (1998 Nov). “Occurrence of indole-3-acetic Acid-producing bacteria on pear trees and their association with fruit russet”. Phytopathology 88 (11): 1149-1157. doi:10.1094/PHYTO.1998.88.11.1149.. PMID 18944847. http://www.ncbi.nlm.nih.gov/pubmed/18944847. 
  38. ^ Renee Goldberg (November 1980). “Cell wall polysaccharidase activities and growth processes: a possible relationship”. Physiologia Plantarum 50 (3): 261-264. doi:10.1111/j.1399-3054.1980.tb04460.x. http://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.1980.tb04460.x/abstract. 
  39. ^ M. T. Brandl; S. E. Lindow (September 1998). “Contribution of Indole-3-Acetic Acid Production to the Epiphytic Fitness of Erwinia herbicola. Applied and Environmental Microbiology 64 (9): 3256-3263. http://aem.asm.org/content/64/9/3256.full. 
  40. ^ G. W. Sundin; J. L. Jacobs (July 1999). “Ultraviolet Radiation (UVR) Sensitivity Analysis and UVR Survival Strategies of a Bacterial Community from the Phyllosphere of Field-Grown Peanut (Arachis hypogeae L.)”. Microbial Ecology 38 (1): 27-38. doi:10.1007/s002489900152. 
  41. ^ T. S. Gunasekera; G. W. Sundin (16 March 2006). “Role of nucleotide excision repair and photoreactivation in the solar UVB radiation survival of Pseudomonas syringae pv. syringae B728a”. Journal of applied microbiology 100 (5): 1073-1083. doi:10.1111/j.1365-2672.2006.02841.x. http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2672.2006.02841.x/full. 
  42. ^ J. J. Kim, G. W. Sundin: Regulation of the rulAB Mutagenic DNA Repair Operon of Pseudomonas syringae by UV-B (290 to 320 Nanometers) Radiation and Analysis of rulAB-Mediated Mutability In Vitro and In Planta. Journal of Bacteriology 182 (21), 2000, S. 6137–6144, online (PDF; 128 kB)
  43. ^ a b Glenn Dulla (2005). “A closer look at Pseudomonas syringae as a leaf colonist”. ASM NEWS-AMERICAN SOCIETY FOR MICROBIOLOGY 71 (10): 469. 
  44. ^ Mark J. Bailey; Andrew K. Lilley,; Julian P. Diaper (1996). “Part III Gene Transfer Between Micro-Organisms in the Phyllosphere”. Aerial Plant Surface Microbiology. pp. 103-123. doi:10.1007/978-0-585-34164-4_7. ISBN 978-0-585-34164-4. http://link.springer.com/chapter/10.1007/978-0-585-34164-4_7 
  45. ^ E. Saile; J. A. McGravey; M. A. Schell; T. P. Denny (December 1997). “Role of Extracellular Polysaccharide and Endoglucanase in Root Invasion and Colonization of Tomato Plants by Ralstonia solanacearum. Phytopathology 87 (12): 1264-1271. doi:10.1094/PHYTO.1997.87.12.1264. http://apsjournals.apsnet.org/doi/abs/10.1094/PHYTO.1997.87.12.1264. 
  46. ^ M. H. Rashid; A. Kornberg (2000 Apr 25). “Inorganic polyphosphate is needed for swimming, swarming and twitching motilities of Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences 97 (9): 4885-4890. doi:10.1073/pnas.060030097. PMID 10758151. http://www.ncbi.nlm.nih.gov/pubmed/10758151. 
  47. ^ Gillian M Fraser; Colin Hughes (1 December 1999). “Swarming motility”. Current Opinion in Microbiology 2 (6): 630-635. doi:10.1016/S1369-5274(99)00033-8. http://www.sciencedirect.com/science/article/pii/S1369527499000338. 
  48. ^ a b 富濱 毅; 西 八束; 荒井 啓 (2006). “チャ赤焼病細菌の菌体外多糖質産生および鞭毛が運動性, バイオフィルム形成, 葉圏での生存および病原力に及ぼす影響”. 日本植物病理学会報 72 (1): 3-13. doi:10.3186/jjphytopath.72.3. https://doi.org/10.3186/jjphytopath.72.3. 
  49. ^ J. Tans-Kersten; H. Huang; C. Allen (2001 Jun). “Ralstonia solanacearum needs motility for invasive virulence on tomato”. J. Bacteriol. 183 (12): 3597-3605. doi:10.1128/JB.183.12.3597-3605.2001. PMID 11371523. http://www.ncbi.nlm.nih.gov/pubmed/11371523. 
  50. ^ 東希望ら (2004). “キチン質分解性細菌Pseudomonas fluorescens KPM-018Pの植物葉面定着性の検討”. 日本植物病理學會報 70 (1): 70. NAID 110002767579. https://ci.nii.ac.jp/naid/110002767579/. 
  51. ^ M. L. Hutchison; M. A. Tester; D. C. Gross (1995). “Role of biosurfactant and ion channel-forming activities of syringomycin in transmembrane ion flux: a model for the mechanism of action in the plant-pathogen interaction”. Molecular Plant-Microbe Interactions 8 (4): 610-620. PMID 8589416. http://www.ncbi.nlm.nih.gov/pubmed/8589416. 
  52. ^ J. Ruiden (1974). W. D. P. Stewart. ed. Nitrogen Fixation by Free-Living Micro-Organisms. ロンドン: Cambridge Univ. Press. pp. 85 
  53. ^ 吉田重方「草地における生物窒素固定」『日本草地学会誌』第34巻第1号、1988年、 20-28頁、 doi:10.14941/grass.34.20_1NAID 110006408267
  54. ^ Didier Alazard (September 1985). “Stem and root nodulation in Aeschynomene spp”. Applied and environmental microbiology 50 (3): 732-734. http://aem.asm.org/content/50/3/732.short. 
  55. ^ B. L. Dreyfus; Y. R. Dommergues (April 1981). “Nitrogen-fixing nodules induced by Rhizobium on the stem of the tropical legume Sesbania rostrata. FEMS Microbiology Letters 10 (4): 313-317. http://www.sciencedirect.com/science/article/pii/0378109781901166. 
  56. ^ Michihiko Yatazawa; Shigekata Yoshida (February 1979). “Stem Nodules in Aeschynomene indica and Their Capacity of Nitrogen Fixation”. Physiologia Plantarum 45 (2): 293-295. doi:10.1111/j.1399-3054.1979.tb01703.x. http://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.1979.tb01703.x/full. 
  57. ^ Michihiko Yatazawa; Gregori G. Hambali; Fuji Uchino (1983). “Nitrogen fixing activity in warty lenticellate tree barks”. Soil science and plant nutrition 29 (3): 285-294. doi:10.1080/00380768.1983.10434629. http://www.tandfonline.com/doi/abs/10.1080/00380768.1983.10434629. 
  58. ^ Jakoba Ruinen (1974). “Nitrogen fixation in the phyllosphere”. The biology of nitrogen fixation 33: 121. 
  59. ^ E. Salati; R. Sylvester-Bradley; R. L. Victoria (1982). “Regional gains and losses of nitrogen in the Amazon basin”. Nitrogen Cycling in Ecosystems of Latin America and the Caribbean 6: 367-376. doi:10.1007/978-94-009-7639-9_34. http://link.springer.com/chapter/10.1007/978-94-009-7639-9_34. 
  60. ^ Whendee L. Silver; Sandra Brown; Ariel E. Lugo (1996). “Biodiversity and Biogeochemical Cycles”. Biodiversity and Ecosystem Processes in Tropical Forests 122: 49-67. doi:10.1007/978-3-642-79755-2_4. http://link.springer.com/chapter/10.1007/978-3-642-79755-2_4. 
  61. ^ Ralph W. F Hardy; Warren S. Silver (1977). “Section III, Biology”. A treatise on dinitrogen fixation 
  62. ^ Adriana B. Abril; Patricia A. Torres; Enrique H. Bucher (2005). “The importance of phyllosphere microbial populations in nitrogen cycling in the Chaco semi-arid woodland”. Journal of tropical ecology 21 (01): 103-107. doi:10.1017/S0266467404001981. http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=274198&fileId=S0266467404001981. 
  63. ^ 三河の植物観察
  64. ^ Robert Lücking (2008). “Foliicolous lichenized fungi”. Flora Neotropica Monograph 103. New York: The New York Botanical Garden Press. pp. 866. ISBN 978-0-89327-491-7 
  65. ^ Folicolous lichens of the world, Web-Version (PDF; 2,8 MB)
  66. ^ Tamás Pócs (1996). “Epiphyllous liverwort diversity at worldwide level and its threat and conservation”. Anales del Instituto de Biologia, Universidad Nacional Autonoma de Mexico, Serie Botanica 67 (1): 109-127. http://www.ejournal.unam.mx/bot/067-01/BOT67110.pdf. 
  67. ^ Jeff Duckett (2008). “Epiphyllic and epifungal liverworts on Hampstead Heath, London”. Field Bryology 95: 8-10. http://rbg-web2.rbge.org.uk/bbs/Activities/field%20bryology/FB95/FB95%20Duckett.pdf. 
  68. ^ Markus Riederer (2006). Caroline Müller. ed. Biology of the plant cuticle. Oxford: Blackwell Pub.. pp. 105. ISBN 978-1405132688 
  69. ^ a b John H. Andrews (1993). “Biological control in the phyllosphere”. Annual review of phytopathology 30 (1): 603-635. 
  70. ^ a b A. M. A. Wahab (1975 May). “Phyllosphere microflora of some Egyptian plants”. Folia Microbiologica 20 (3): 236-245. doi:10.1007/BF02876785. http://link.springer.com/article/10.1007/BF02876785. 
  71. ^ a b C. Leban (1965). “Field tests for disease control by an epiphytic bacterium”. Ibid 55: 1375-1376. 
  72. ^ a b C. Leban (1964). “INFLUENCE OF BACTERIA ISOLATED FROM HEALTHY CUCUMBER LEAVES ON 2 LEAF DISEASES OF CUCUMBER”. Phytopathology 54 (4): 405-408. 
  73. ^ J. P. Blakeman; I.D.S. Brodie (1977). “Competition for nutrients between epiphytic micro-organisms and germination of spores of plant pathogens on beetroot leaves”. Physiological Plant Pathology 10 (1): 29-42. doi:10.1016/0048-4059(77)90005-4. http://www.sciencedirect.com/science/article/pii/0048405977900054. 
  74. ^ J. P. Blakeman; N. J. Fokkema (1982). “Potential for biological control of plant diseases on the phylloplane”. Annual Review of Phytopathology 20 (1): 167-190. doi:10.1146/annurev.py.20.090182.001123. http://www.annualreviews.org/doi/abs/10.1146/annurev.py.20.090182.001123?journalCode=phyto. 
  75. ^ I. D. S. Brodie; J. P. Blakeman (1976 November). “Competition for exogenous substrates in vitro by leaf surface micro-organisms and germination of conidia of Botrytis cinerea”. Physiological Plant Pathology 9 (3): 227-239. doi:10.1016/0048-4059(76)90056-4. http://www.sciencedirect.com/science/article/pii/0048405976900564. 
  76. ^ E. C. S. Chan; H. Katznelson (1961). “Growth interactions of Arthrobacter globiformis and Pseudomonas sp. in relation to the rhizosphere effect”. Canadian journal of microbiology 7 (5): 759-767. doi:10.1139/m61-090. http://www.nrcresearchpress.com/doi/abs/10.1139/m61-090#.V5QK3riLTIU. 
  77. ^ B. K. Dutta (June 1981). “Studies on some fungi isolated from the rhizosphere of tomato plants and the consequent prospect for the control of Verticillium wilt”. Plant and Soil 63 (2): 209-216. doi:10.1007/BF02374599. http://link.springer.com/article/10.1007/BF02374599. 
  78. ^ Marion H. Ebben; D. M. Spencer (1978). “The use of antagonistic organisms for the control of black root rot of cucumber, Phomopsis sclerotioides. Annals of Applied Biology 89 (1): 103-106. doi:10.1111/j.1744-7348.1978.tb02579.x. http://onlinelibrary.wiley.com/doi/10.1111/j.1744-7348.1978.tb02579.x/abstract. 
  79. ^ V. Jensen (1971). “The bacterial flora of Beech leaves”. Ecology of leaf surface micro-organisms: 463-469. 
  80. ^ J. T. Kroulik; L. A. Burkey; H. G. Wiseman (1955). “The microbial populations of the green plant and of the cut forage prior to ensiling”. Journal of Dairy Science 38 (3): 256-262. 
  81. ^ J. J. Marois; P. M. Coleman (1995). “Ecological succession and biological control in the phyllosphere”. Canadian journal of botany 73 (S1): 76-82. doi:10.1139/b95-228. http://www.nrcresearchpress.com/doi/abs/10.1139/b95-228#.V5QZf7iLTIU. 
  82. ^ A. H. Moubasher; M. A. Elnaghy; H. M. Abdel-Fattah (1971). “Citrus plantation fungi in upper Egypt”. Transactions of the British Mycological Society 57 (2): 289-294. doi:10.1016/S0007-1536(71)80011-6. http://www.sciencedirect.com/science/article/pii/S0007153671800116. 
  83. ^ 田盛正雄、与那覇哲義、諸見里善一「沖縄の有用植物病害目録 II」『琉球大学農学部学術報告』第40巻、1993年、 53-68頁。
  84. ^ 諸見里 善一; 澤岻 哲也; 田場 聡; 安谷屋 信一; 本村 恵二 (2003). “マンゴー炭疽病の生物の防除法に関する研究 (I) マンゴー葉面の微生物相と拮抗菌の探索”. 熱帯農業 47 (1): 34-41. doi:10.11248/jsta1957.47.34. https://doi.org/10.11248/jsta1957.47.34. 
  85. ^ Yang Bai; Daniel B. M?ller; Girish Srinivas; Ruben Garrido-Oter; Eva Potthoff (17 December 2015). “Functional overlap of the Arabidopsis leaf and root microbiota”. Nature 528: 364-369. doi:10.1038/nature16192. http://www.natureasia.com/ja-jp/nature/highlights/70690. 
  86. ^ , David M. Ward; Roland Weller; Mary M. Bateson (1990). “16S rRNA sequences reveal numerous uncultured microorganisms in a natural community”. Nature 345 (6270): 63-65. doi:10.1038/345063a0. PMID 1691827. http://europepmc.org/abstract/med/1691827. 
  87. ^ Vigdis Torsvik; Jostein Goksøyr; Frida Lise Daae (March 1990). “High diversity in DNA of soil bacteria”. Applied and environmental microbiology 56 (3): 782-787. http://aem.asm.org/content/56/3/782.short. 
  88. ^ D. Russell; J. Chard; R. McKinlay (May 1999). “Effect of Bacillus thuringiensis and a pyrethroid insecticide on the leaf microflora of Brassica oleracea. Letters in applied microbiology 28 (5): 359-362. doi:10.1046/j.1365-2672.1999.00548.x. http://onlinelibrary.wiley.com/doi/10.1046/j.1365-2672.1999.00548.x/full. 
  89. ^ S. Susan Hirano; Christen D. Upper (1983). “Ecology and Epidemiology of Foliar Bacterial Plant Pathogens”. Annual review of phytopathology 21 (1): 243-270. doi:10.1146/annurev.py.21.090183.001331. http://www.annualreviews.org/doi/abs/10.1146/annurev.py.21.090183.001331?journalCode=phyto. 
  90. ^ Claudia Knief (2008). “Cultivation-independent characterization of Methylobacterium populations in the plant phyllosphere by automated ribosomal intergenic spacer analysis”. Applied and environmental microbiology 74 (7): 2218-2228. doi:10.1128/AEM.02532-07. http://aem.asm.org/content/74/7/2218.short. 
  91. ^ a b Markus Riederer; Caroline Müller (2006). Biology of the plant cuticle. Oxford: Blackwell Pub.. pp. 334–341. ISBN 978-1405132688 
  92. ^ 10th International Symposium on Phyllosphere Microbiology
  93. ^ James K. M. Brown; Mogens S. Hovmøller (26 Jul 2002). “Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease”. Science 297 (5581): 537-541. doi:10.1126/science.1072678. http://science.sciencemag.org/content/297/5581/537.short. 
  94. ^ S. E. Lindow; D. C. Arny; C. D. Upper (1983). “Biological control of frost injury: An isolate of Erwinia herbicola antagonistic to ice nucleation active bacteria”. Phytopathology 73 (8): 1097-1102. http://www.apsnet.org/publications/phytopathology/backissues/Documents/1983Articles/Phyto73n08_1097.PDF. 
  95. ^ 對馬 誠也 (2001). 對馬 誠也. ed. IPMの中における生物防除―現状と展開―. 東京: ソフトサイエンス社 
  96. ^ 藤原圭一ら (2004). “キチン質分解性細菌Pseudomonas fluorescens KPM-018Pを利用した食葉性害虫ニジュウヤホシテントウの生物防除”. 日本植物病理學會報 70 (1): 69-70. NAID 110002767578. https://ci.nii.ac.jp/naid/110002767578/. 
  97. ^ 豊田秀吉; 松田克礼; 野々村照雄 (2004). “P-097 キチナーゼ遺伝子を導入した Enterobacter cloacae KPM-007E による食葉性害虫ニジュウヤホシテントウの生物防除”. 日本微生物生態学会講演要旨集 20: 119. NAID 110006320213. PMID . https://ci.nii.ac.jp/naid/110006320213. 
  98. ^ a b John M. Whipps; Paul Hand; David A.C. Pink; Gary D. Bending (2008). “Chapter 7 Human Pathogens and the Phyllosphere”. Advances in Applied Microbiology. 64. pp. 183-221. doi:10.1016/S0065-2164(08)00407-3. http://www.sciencedirect.com/science/article/pii/S0065216408004073 
  99. ^ Berlec, Aleš (2012-09-01). “Novel techniques and findings in the study of plant microbiota: Search for plant probiotics”. Plant Science 193–194: 96–102. doi:10.1016/j.plantsci.2012.05.010. http://www.sciencedirect.com/science/article/pii/S0168945212001070. 
  100. ^ Lindow, Steven E; Leveau, Johan H. J (2002-06-01). “Phyllosphere microbiology”. Current Opinion in Biotechnology 13 (3): 238–243. doi:10.1016/S0958-1669(02)00313-0. http://www.sciencedirect.com/science/article/pii/S0958166902003130. 
  101. ^ a b Amarjyoti Sandhu; Larry J. Halverson; Gwyn A. Beattie (2007). “Bacterial degradation of airborne phenol in the phyllosphere”. Environmental microbiology 9 (2): 383-392. doi:10.1111/j.1462-2920.2006.01149.x. http://onlinelibrary.wiley.com/doi/10.1111/j.1462-2920.2006.01149.x/full. 




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「葉圏」の関連用語

葉圏のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



葉圏のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
デジタル大辞泉デジタル大辞泉
(C)Shogakukan Inc.
株式会社 小学館
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの葉圏 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS