発芽 花粉の発芽

発芽

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/09/24 20:05 UTC 版)

花粉の発芽

ユリ科植物の花粉の発芽(電子顕微鏡写真)

植物の花粉柱頭に付着して受粉すると、花粉の発芽が起こり、花粉の中から花粉管が伸長する。この花粉管によって精細胞が胚珠に運ばれ、受精が起こって結実に至る。

花粉の発芽は柱頭での水和反応などによって促進されることが知られている[65]。また花粉の発芽に適した温度も種によって異なり、例えばナスでは 15 °C より 25 °C でより高い発芽率を示す[66]。花粉はシャーレ上や試験管内などで in vitro に発芽させることも可能である[67][68]。花粉の発芽を実験的に行う場合は、培地として寒天培地[66][69]やゼラチン培地[70]などが用いられる。

自家不和合性を持つ植物においては、同じ花の花粉が柱頭についた場合(自家受粉)、花粉発芽の抑制や花粉管伸長の阻害が起こることが知られている。これは柱頭上で自花の花粉と他花の花粉を識別できる機構に基づいているが[71]、この機構によって花粉は柱頭についても発芽できない、または発芽できても花粉管を伸長することが出来ずに受精には至らない。また、花粉発芽や花粉管伸長を阻害する物質としてギ酸カルシウムが知られており、摘花処理(一部の花を間引くこと)を行う際に使用されることがある[72]

胞子の発芽

シダ類・コケ類・シャジクモ類藻類菌類などの胞子が休眠状態から活動を始める場合にも発芽という。胞子が発芽すると、発芽管を通して胞子内の物質が出現するが、各分類群によって胞子からの生長様式は異なる。例えばシダ植物では、胞子からは前葉体を生じてそこから植物体を発達し、コケ植物の場合は通常胞子から原糸体を生じ、それが配偶体となる。菌類の場合は、胞子は普通は菌糸として発達する。また細菌では、胞子は発芽すると栄養細胞として生長する。

また一部の褐藻類、紅藻類、緑藻類、菌類などでは、鞭毛をもち運動能をもつ胞子である遊走子を持つこともあり[73]、この遊走子から個体が発生することも同様に発芽という。

シダ植物、コケ植物

アメリカコウヤワラビ(シダ植物)の前葉体とそこから発芽した若い胞子体
コケ植物の胞子発芽(図右)

シダ植物コケ植物の胞子は胞子体で形成され、適当な環境条件で発芽して配偶体を形成する[74]。シダ植物の場合、この配偶体のことを前葉体ともいい、発芽して生じた前葉体はハート型であることが多く、光合成による栄養成長によって生長する[74]。一方コケ植物の胞子は、発芽すると原糸体となって分枝し、造卵器や造精器といった生殖器官をもつ配偶体に生長する[75]

シダ植物の胞子は、多細胞の種子とは違って一つの細胞からなる器官であるが、発芽の生理学的な面では種子と胞子で多くの特徴が共通している[76]。たとえば光による胞子発芽には、種子と同様にジベレリンが関与していることが知られており、ジベレリン生合成阻害剤によって光発芽は阻害される[76]

シダ植物の胞子発芽に適した条件は、アメリカコウヤワラビなどで実験的に調べられている。それによると散乱光が胞子発芽を促進する一方で、太陽光は発芽に不適であるばかりか、強い太陽光に長時間晒されると葉緑体のクロロフィルが破壊される[77]。また温度と光の組み合わせによって発芽率は変化し、アメリカコウヤワラビの場合、発芽に適した温度は、散乱光下では 16-34 °C であるが、暗黒条件では 24-33 °C の温度条件下で発芽が起きる[77]。またトクサ属の種でも暗条件で発芽することが知られている[78]。ただしコタニワタリなど、種によっては光がない条件で発芽できない胞子を持つものもある[78]

コケ植物の胞子発芽に関する環境条件については、ヒョウタンゴケなどの蘚類ゼニゴケなどの苔類でそれぞれ研究が行われている。光条件については、光に晒されることによって発芽が促進される一方、通常は光がない条件では発芽できないことがわかっている[78]。ただし青色光や緑色光では発芽率が低下することも報告されている[79]。また暗黒条件で1か月保存された胞子は発芽能を失う[78]。しかし二酸化炭素を除去した環境でも発芽が起こることから、発芽に光合成は必要ではないものと考えられている[78]。光の強さも発芽に影響し、蘚類では弱光条件でも発芽できるのに対し、苔類では弱光条件で発芽が阻害されることが知られている[78]。ただしヒョウタンゴケなどでは、5%-10%濃度のブドウ糖を培地に与えると、暗黒条件でも発芽が起こることが知られている。

温度条件では、30 °C 以上の高温で胞子の死滅または発芽率の大幅な低下が見られるが、短時間の高温処理の後、光がある常温環境に置くと発芽が見られる[78]

シャジクモ類

シャジクモ属の1種の生殖器。上の造卵器から卵胞子を生産する

シャジクモ類は他の緑藻植物と比べて陸上植物に最も近縁な分類群であり[80]、陸上植物の起源になった分類群とされている[81]。このシャジクモ類は卵胞子で繁殖を行なっているが、この卵胞子は休眠を経たのち減数分裂を行って発芽し[82]、栄養生長を行なって成体となる。発芽に好適な環境については、実験室内、あるいはフィールドでの発芽実験がさまざまな種について行われている[83]。例えば光環境や乾燥といった環境条件が発芽を引き起こす要因として知られているが、種によって発芽を引き起こす要因は異なっている[83]。種ごとの具体的な発芽特性は、実験的に発芽させることが容易な Chara zeylanica の発芽適温(20-30 °C)など[84]、いくつかの種で判明しているものもあるが、シャジクモ (Chara braunii) の卵胞子は低温処理(春化)など様々な条件で処理しても発芽が殆ど見られない[85]、クサシャジクモ (Chara vulgaris) やヒメフラスコモ (Nitella flexilis) は乾燥処理や低温処理を加えても50%程度の発芽率にとどまる[83]、など発芽に適した条件についてあまり研究が進んでいない種もある。

藻類

コンブワカメなどの褐藻テングサなどの紅藻アオサなどの緑藻などといった藻類は、胞子あるいは遊走子をもち、それが石や岩、他の藻体、または堤防などの人工物に着生して発芽する[86]。発芽した胞子は芽胞体や葉状体となり、それが生長して成体となる。

藻類の胞子発芽は、他の生物との相互作用によって制御されることもある。例えば海産の細菌である Pseudoalteromonas tunicata は、アオサ(緑藻)やイトグサ(紅藻)の胞子発芽を阻害する物質を分泌している[86]。またサンゴモ(紅藻)の一種であるエゾイシゴロモは、その表面に遊走子が付着すると、その遊走子の発芽、生育を阻害する働きを持っていることが知られている[87]

また特に渦鞭毛藻などでは、シスト(休眠胞子、休眠性接合子)という休眠性の細胞体を形成し、それが発芽して繁殖する性質が知られている。シストの発芽には通常一定期間の休眠が必要であり、休眠期間は種によって異なるが、数週間から6か月程度である種が多い[88]。また、シストを発芽させるために低温処理などによって休眠解除を行う必要がある種もいる[88]。シストの発芽可能な温度は 5-22 °Cと幅広いが、5 °C など低温条件で生じた発芽細胞は生存できず、発芽に適した条件が揃えばその後生育が可能であるか否かにかかわらず発芽するものと考えられている[88]

菌類

担子菌類の生活環
さび病菌の胞子発芽

いわゆるキノコを生産する担子菌類の胞子については、幾つかの種で発芽に適した条件が研究されている。例えば低温条件下で胞子を一定期間保存することによって、多くの種で発芽率が上昇することが知られている[89]。また光なども発芽に影響を与えることが知られており、例えば Thanatephorus cucumeris の胞子は、直射日光に30-60分間さらされることで急速に発芽能を失うとされる[90]。化学物質によって胞子発芽が誘引される例も知られており、例えばマツタケの胞子は酪酸を加えた培地に播くことである程度発芽率が上昇する[91]。またマツタケなどの菌根菌の胞子では、共生関係にあるマツなどの樹木の苗を培養した培地に播くことによっても、ある程度発芽率が上昇することが知られている[91]。しかし、発芽条件について不明な点も多く残されており、特に前述したマツタケなどの菌根菌では、培地に播種してもほとんど発芽しないことも多い[91]。また多くの菌根菌の種では、採取された胞子は乾燥に非常に弱く、乾燥条件で放置すると数時間で発芽能を失う[91]

農作物や昆虫の天敵となる種を含む糸状菌の多くの種は、菌糸から無性的に生じる分生胞子をもち、これが発芽することによって増殖する。この分生胞子は種によって2つの型があることが知られており、アミノ酸などを外部環境から取り入れることで発芽が起こる型と、適度な温度下であれば水分のみで発芽が起こる型とがある[92]。糸状菌の胞子発芽には、通常酸素と炭酸ガスが必要とされているが、例えばイネごま葉枯病菌など、後者のような特徴を持つ糸状菌の種では、酸素や炭酸ガスがない環境でも発芽管を伸長させ、正常に発芽できることが知られている[92]

ジャガイモ疫病菌などの卵菌類では遊走子嚢を持つが、その遊走子嚢から直接菌糸が生じる「直接発芽」と、遊走子嚢から遊走子を生産し、その遊走子が発芽して菌糸を生じる「間接発芽」という2つのタイプの発芽様式をもつ。遊走子嚢が直接発芽を行うか間接発芽を行うかは外部環境によって変化し、例えばジャガイモ疫病菌では、30-36 °C の高温処理を行うと、間接発芽型の遊走子が直接発芽型に転換する[93]。また塩化カルシウム水溶液などが間接発芽を促進することも知られている[94]

細菌

細菌の胞子は、外部環境が好適になるまで休眠胞子となっており、コート層やコルテックス層などというタンパク質の層や、胞子細胞壁や胞子細胞膜などといった多重構造によって乾燥などから保護されている[95]。休眠胞子は、L-アラニンなどの栄養素に触れるとすぐに発芽し、栄養細胞へと分化する[95]。この発芽はコルテックス層などの分解に伴って起こり、早ければ数分から30分で発芽が完了する[95]

人間との関係

植物の種子発芽や、菌類、細菌などの胞子発芽については、古くから多くの研究がなされてきた。特に作物として重要な種や、病原菌など人間活動に害をなす種などでは、その発芽に関する知見が蓄積され、さまざまな方法で活用されている。

種子発芽の研究と利用

発芽試験の様子
MS培地での発芽
発芽玄米

農作物花卉などとして重要な植物種、または雑草として扱われる種については、その発芽特性について特に研究が進められている。それらの種で発芽特性などを解明するために、室内または圃場などで、さまざまな手法による発芽実験(発芽試験)が行われている。

発芽実験は、主に圃場や苗畑、人工気象室(ファイトトロン)、あるいは室内のインキュベータなどで行われる。温度や日長など発芽にかかわる要因を確実に特定するためには、シャーレを用いた室内での発芽実験が行われる[96]。また発芽試験において、一般的な発芽の生理活性を調べる場合の検定植物としては、阻害物質に対する感受性が高いレタスが多くの研究者に用いられている[97]

また農業分野では、作業量の軽減や安定的な収穫量を得るために、作物の種子は一斉に発芽することが求められる。一般的に野生種では休眠性が強く、発芽が起こるタイミングも散発的であるが、栽培に適したように品種改良されたものでは、休眠性の程度が低く、発芽時期も均一になる[34]。これは、育種学的な操作による突然変異の利用や選抜、遺伝子組換えといった人為的な圧力を意識的、あるいは無意識的に繰り返すことで得られた性質である[34]

品種改良による発芽の斉一性の獲得だけでなく、プライム処理やコーティング処理、ネイキッド処理といった種子そのものの加工によって発芽、生育を調節することもあり、植物工場でもそのように加工された種子が利用される[98]。植物工場では、発芽の不揃いが余分な労力負担や余計な施設稼働などにつながるため、特に発芽の斉一性が求められており、自動的、省力的に発芽を管理するため、温度や湿度、光などを調節する発芽室が施設内に設けられている[98]。また、春播きの種を冬期に播種する場合には、発芽抑制剤を使用することで早期の発芽を抑制し、確実に越冬させてから春期に発芽するよう調節することが可能である[99]。さらに、ジャガイモなどでは、収穫後にクロルプロファムなどの薬品を用いて、輸送・貯蔵中に品質が落ちないよう発芽抑制処理が行われる[100]

一方、作物の雑草や害草、侵略的外来種などといった駆除対象とされる種については、発芽生態の解明や、それに基づく防除法の確立が進められている。雑草の防除で最も一般的に行われているのは、除草剤など農薬による防除である。例えば稲作で用いられる非選択性除草剤のジクワット・パラコート混合剤は、雑草の草体を枯殺するだけでなく、雑草種子の発芽・発育も阻害することで、様々な種類の雑草を防除することが可能となる[101]。作用機序は除草剤の種類によって様々であり、ジベレリンなど発芽時の代謝にかかる物質の生合成を阻害するものが知られている。しかしアトラジントリアジンスルホニルウレア系除草剤などに抵抗性をもつ雑草が既に確認されており、そのような抵抗性をもった系統では、抵抗性を持たない系統より発芽率が高く、速やかな発芽率を示す場合も知られている[102]。一方で、ALS(アセト乳酸合成酵素)阻害剤への抵抗性をもつ個体では、抵抗性を持たない個体よりも発芽が遅延することも報告されている[103]

また他に、除草剤などによらない防除法も幾つかの種で提案されている。例えばマメ科植物の強害雑草であり、かつ外来種である外来アサガオ類(ホシアサガオ、マメアサガオなど)は、火炎放射によってほぼすべての種子が発芽するため、火炎放射器によって発芽を促進させた後、水をはって数か月放置することによって全滅させるという防除法が提案されている[104]。他に、ハリエニシダの種子に対してマイクロ波の照射を行い、種子発芽の促進、あるいは種子の死滅を誘導して防除するという方法も考案されている[105]。作物に寄生するストライガなどの寄生植物の防除には、寄主がいない環境で強制的に発芽させて死滅させるための自殺発芽誘導剤の開発が進められている[106]

様々な植物の種子を発芽させた実生は、スプラウト(発芽野菜)として食用とされる[107]。スプラウトは栄養豊富であることが知られており、食材として注目されている[108]。スプラウトに用いられる植物はさまざまであるが、モヤシリョクトウなど)、貝割れ大根ダイコン)、アルファルファ(ムラサキウマゴヤシ)、ソバなどのスプラウトが市場に出回っている。一方、貝割れ大根などのスプラウトで食中毒が起こる事例も報告されているが、これは発芽時に種子から糖類などが放出され、種子や苗に付着していた大腸菌などがそれを利用して繁殖しやすいためと考えられている[109]。スプラウトを生産する種子に対しては、種子に付着した糸状菌等の胞子発芽を抑制するために抗糸状菌剤処理などが行われるが、これによる大腸菌の増殖を抑制する効果は低いとされており、他の防除方法が必要とされる[109]。また日本では、2000年代から玄米をある程度発芽させて休眠状態にし、食べやすくした発芽玄米が急速に普及している[110]

発芽時にはデンプンに分解するアミラーゼ(糖化酵素)が合成されるため、大麦を発芽させた麦芽は穀物酒の醸造などに利用されている。

胞子発芽の研究と利用

細菌の胞子は食品の変敗、食中毒、感染症などに大きく関係しているため、その胞子の休眠性や耐久性と共に、胞子の発芽についての研究が重要視されている[95]。細菌胞子の発芽機構については枯草菌で特によく研究されており、発芽の分子的機構がかなりの部分解明されてきたが、コート層のタンパク質分解などの機構についてはほとんど研究が進んでいない[95]。また糸状菌の分生胞子については芳香族硫シアン化合物などを主成分とした抗糸状菌剤によって発芽を抑制し、防除出来ることが知られている[92]

食用または薬用として用いる菌類(キノコ)の発芽については、育種や安定生産の観点から研究が進められている。育種においては、二種類の品種の担子胞子から発芽した一核菌糸体を交配させて二核菌糸体を作出し、それを生長させて新品種を作出するといった手法が用いられている[111]。また、マツタケなど人工的な胞子の発芽方法が確立されていない種では、人工栽培に向けて胞子の発芽特性の研究が進められている[91]

一方、貝毒赤潮の原因となる渦鞭毛藻などの発芽については、主にその防除や予防の目的で研究が進められている(例えば石川・石井(2007)[112]など)。

植生復元、環境評価などへの発芽の利用

種子や胞子などの発芽を、植生復元への利用や環境評価の指標に用いる試みもある。よく知られた事例として、土壌シードバンクを掘り出して撒き出すことで、土壌中で休眠していた種子を発芽させ、植生を復活させる取り組みがある。例えば霞ヶ浦では、浮葉植物であるアサザの個体群を、土壌シードバンクから再生する事業が行われているが、これはアサザの種子が土壌シードバンクを形成しやすい発芽・休眠特性をもつことを利用したものである[113]。しかし単に土壌を撒き出すだけでなく、発芽、定着に適した環境を同時に整備することが必要であるとされている[113]。また土壌シードバンクは緑化材料などとしても活用されており、森林の表土を法面に吹きつけ、そこに含まれる埋土種子を発芽させて植物群落を形成させるという取り組みもある[114]

また海藻は、沿岸域の排水や有害物質の影響を評価する指標となりうるため、褐藻や紅藻といった海藻の胞子や遊走子が発芽可能か否かによって、有害物質量などを判定する方法が研究されている。例えば紅藻類の一種スサビノリの殻胞子の発芽率をもとに、重金属などの濃度を判定する方法が考案されている[115]


  1. ^ a b 鈴木 (2003)、185頁。
  2. ^ a b c Leyser and Day (2003), p. 6.
  3. ^ a b 鈴木善弘「ナス種子の発芽に及ぼす Gibberellin の効果に関する研究 (第2報)」『福島大学学芸学部理科報告』第14巻、"福島大学学芸学部、1964年、48-54頁、ISSN 04298446NAID 120001047735 
  4. ^ 鈴木 (2003)、82頁。
  5. ^ a b 鈴木 (2003)、85頁。
  6. ^ 鈴木 (2003)、89頁。
  7. ^ 岡崎光良、小河原公司、稲生美子「カラタチ種子 (Poncirus trifoliata Raf.) の発芽と貯蔵について」『岡山大学農学部学術報告』第24巻第1号、岡山大学農学部、1964年、29-36頁、NAID 120002304125 
  8. ^ a b c 鈴木 (2003)、84頁。
  9. ^ 鈴木 (2003)、241頁。
  10. ^ 鈴木 (2003)、238頁。
  11. ^ 鈴木 (2003)、236頁。
  12. ^ 鈴木 (2003)、101-103頁。
  13. ^ a b 鈴木 (2003)、94頁。
  14. ^ 鈴木 (2003)、97頁。
  15. ^ 鈴木 (2003)、98頁。
  16. ^ 鈴木 (2003)、99頁。
  17. ^ Suzuki, Y.; Saito, T. (1969). “Photo-, thermo- and chemical-induction in seed germination of Physalis Alkekengi / ホオズキ種子の発芽に対する光,変温とジベレリン,チオ尿素,硝酸カリの効果”. 福島大学教育学部理科報告 (福島大学教育学部) 19: 37-46. ISSN 0387-0855. NAID 120001494503. hdl:10270/2203. 
  18. ^ a b c 鈴木 (2003)、189頁。
  19. ^ a b c 鈴木 (2003)、132頁。
  20. ^ a b 清和 (2009)、156頁。
  21. ^ 鈴木 (2003)、153頁。
  22. ^ a b 鈴木 (2003)、155頁。
  23. ^ 鈴木 (2003)、158頁。
  24. ^ a b 鈴木 (2003)、159頁。
  25. ^ 鈴木 (2003)、156-157頁。
  26. ^ a b 近藤哲也「ハマヒルガオ(Calystegia soldanella(L.)Roem.et Schult.)種子の硬実休眠と濃硫酸などによる休眠打破処理の効果」『日本緑化工学会誌』第26巻第1号、日本緑化工学会、2000年、28-35頁、doi:10.7211/jjsrt.26.28NAID 110002939155 
  27. ^ Leyser and Day (2003), p. 5.
  28. ^ a b 高橋成人種子の世界 -13-」『農業および園芸』第65巻第9号、1990年、1047-1053頁、ISSN 03695247NAID 40003098868 
  29. ^ a b 鈴木 (2003)、191頁。
  30. ^ 鈴木 (2003)、193頁。
  31. ^ a b 鈴木 (2003)、198頁。
  32. ^ Suzuki, Yoshihiro; Takahashi, Nobindo (1968). “Effects of After-Ripening and Gibberellic Acid on the Thermoinduction of Seed Germination in Solarium melongena”. Plant Cell Physiology 9 (4): 653-660. 
  33. ^ a b 鈴木 (2003)、201頁。
  34. ^ a b c d e 高橋成人「作物の形態と機能 (1) 作物における種子の発芽」『農業技術』第28巻第1号、農業技術協會、1973年、30-35頁、NAID 40018406365 
  35. ^ a b 鈴木善弘、木本氏幹「ナス種子の発芽に関する研究」『福島大学学芸学部理科報告』第15巻、1965年、42-57頁、NAID 120001871690hdl:10270/3245 
  36. ^ a b c d 木下尚子、嶋一徹、廣野正樹「山火事跡地における先駆木本類の発芽・定着特性」『日本緑化工学会誌』第30巻第1号、日本緑化工学会、2004年、336-339頁、doi:10.7211/jjsrt.30.336ISSN 09167439NAID 110002912326 
  37. ^ Rollin, P. (1972). Mitrakos, K.; Shropshire, W.. ed. Phytochrome. London and New York: Academic Press. pp. 229-254 
  38. ^ a b c 鈴木 (2003)、204頁。
  39. ^ 藤伊正「光発芽の生理」『植物学雑誌』第77巻第910号、日本植物学会、1964年、146-154頁、doi:10.15281/jplantres1887.77.146ISSN 0006-808XNAID 130004212826 
  40. ^ 近藤頼巳「五〇 好光性種子竝に嫌光性種子の發芽に對する光の影響」『日本作物學會紀事』第8巻第4号、1936年、611-612頁、NAID 110001735885 
  41. ^ 鈴木 (2003)、206頁。
  42. ^ 鈴木 (2003)、207頁。
  43. ^ 鈴木 (2003)、209頁。
  44. ^ 鈴木 (2003)、210頁。
  45. ^ Siegel, S. M.; Rosen, L. A. (1962). “Effects of Reduced Oxygen Tension on Germination and Seedling Growth”. Physiologia Plantarum 15 (3): 437-444. doi:10.1111/j.1399-3054.1962.tb08047.x. 
  46. ^ 鈴木 (2003)、217頁。
  47. ^ 鈴木 (2003)、218頁。
  48. ^ a b 深尾 (2009)、92頁。
  49. ^ 清和 (2009)、161頁。
  50. ^ 清和 (2009)、166頁。
  51. ^ 清和 (2009)、168頁。
  52. ^ 牛木純、赤坂舞子、手塚光明、石井俊雄「国内に発生する雑草イネの発芽様式および休眠性の特徴」『雑草研究』第53巻第3号、日本雑草学会、2007年、128-133頁、ISSN 0372-798XNAID 130004504005 
  53. ^ 林田 (2009)、173頁。
  54. ^ 林田 (2009)、174頁。
  55. ^ 林田 (2009)、175頁。
  56. ^ 林田 (2009)、176頁。
  57. ^ 林田 (2009)、177頁。
  58. ^ a b 米山 (2009)、115頁。
  59. ^ 米山 (2009)、116頁。
  60. ^ 米山 (2009)、118頁。
  61. ^ 杉本幸裕、Abdelbagi M. Ali、渡辺美華、藪田純代、木下広美、稲永忍、板井章浩「根寄生雑草 Striga hermonthica の発芽戦略におけるエチレンの役割」『日本農薬学会大会講演要旨集』第28巻、2003年、49頁、NAID 110001800695 
  62. ^ 丹野憲昭「ヤマノイモ属植物の成長,特に休眠におけるジベレリンの作用」『博士学位論文』乙第5938号、東北大学、1993年、NAID 500000095470hdl:10097/25344 
  63. ^ 木俣美樹男, 山上真一, 小林興「カシュウイモむかご(地上塊茎)の休眠について」『東京学芸大学紀要 第6部門 産業技術・家政』第27号、東京学芸大学、1975年12月、6-10頁、ISSN 03878953NAID 110000270597 
  64. ^ a b Van Wijk, R. J. (1989). “Ecological studies on Potamogeton pectinatus L. III. Reproductive strategies and germination ecology”. Aquatic Botany 33: 271-299. 
  65. ^ Raven, Peter H.; Evert, Ray F.; Eichhorn, Susan E.. Biology of Plants. New York: W. H. Freeman and Company. pp. 504-508. ISBN 0-7167-1007-2 
  66. ^ a b 飛川光治「ナスの花粉発芽に及ぼす培養温度ならびに促成栽培における種子数、収量および果実外観に及ぼす日中加温の受粉の影響(栽培管理・作型)」『園芸学研究』第7巻第3号、2008年、381-385頁、doi:10.2503/hrj.7.381NAID 110006821432 
  67. ^ Martin, Franklin W. (1972). In Vitro Measurement of Pollen Tube Growth Inhibition”. Plant Physiology 49 (6): 924-925. doi:10.1104/pp.49.6.924. PMC 366081. PMID 16658085. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC366081/. 
  68. ^ Pfahler, Paul L. (1981). “In vitro germination characteristics of maize pollen to detect biological activity of environmental pollutants”. Environmental Health Perspectives 37: 125-132. doi:10.2307/3429260. JSTOR 3429260. PMC 1568653. PMID 7460877. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1568653/. 
  69. ^ 飯塚正英、工藤暢宏、木村康夫、荻原勲「胚珠培養による Spiraea thunbergii Sieb. と Spiraea japonica L. との種間雑種の作出」『園芸学会雑誌』第70巻第6号、2001年、767-773頁、doi:10.2503/jjshs.70.767 
  70. ^ 亀谷寿昭、日向康吉「Brassica 胚珠の試験管内受精」『育種學雜誌』第20巻第5号、1970年、253-260頁、doi:10.1270/jsbbs1951.20.253 
  71. ^ 渡辺正夫「アブラナ科自家不和合性におけるS遺伝子座の分子遺伝学的解析」(PDF)『平成14年度(第1回)日本農学進歩賞 受賞者講演要旨]』、農学会、2002年。 
  72. ^ 平塚伸、渡辺学、河合義隆、前島勤、川村啓太郎、加藤尉行「ニホンナシに対するギ酸カルシウムの摘花作用」『園芸学会雑誌』第71巻第1号、園藝學會、2002年、62-67頁、doi:10.2503/jjshs.71.62ISSN 00137626NAID 110001816588 
  73. ^ 井上勲『藻類30億年の自然史―藻類からみる生物進化・地球・環境』東海大学出版会、2007年、61頁。ISBN 978-4486017776 
  74. ^ a b 坂卷義章『シダ植物の物質生産に基づく成長の生理生態学的研究』 博士学位論文、乙第1957号、早稲田大学、2005年。hdl:2065/3011 
  75. ^ 岩月善之助、水谷正美『原色日本蘚苔類図鑑』保育社〈保育社の原色図鑑〉、1972年、1頁。ISBN 4586300515 
  76. ^ a b Weinberg, Eric S.; Voeller, Bruce R. (1969). “Induction of Fern Spore Germination”. Proceedings of the National Academy of Sciences 64: 835-842. 
  77. ^ a b Hartt, C. E. (1925). “Conditions for Germination of Spores of Onoclea sensibilis”. Botanical Gazette 79 (3): 427-440. 
  78. ^ a b c d e f g Heald, Fred de Forest (1898). “Conditions for the Germination of the Spores of Bryophytes and Pteridophytes”. Botanical Gazette 26 (1): 25-45. JSTOR 2464515. 
  79. ^ 中村厳、佐々木隆男「蘚類の培養に関する研究: I. カギバニワスギゴケ (Pogonatum inflexum) 胞子の発芽と糸状体の生長」『育種學雜誌』第14巻第3号、1964年、198頁、NAID 110001810741 日本育種学会第25回講演会講演要旨。一般講演。
  80. ^ Nakayama, Takeshi (1997). 18SrDNA phylogeny of the green algae with evaluation of morphological characters (Ph.D. thesis). University of Tsukuba.
  81. ^ 藤村政隆『褐藻 Pylaiella littoralis のミトコンドリア group II イントロンと Chlorella saccharophila と同定された緑藻 KS-1 株の分子系統解析』(PDF)(修士論文)高知工科大学、2008年http://introking3.com/002ftp/33/ase4/1105118.pdf 
  82. ^ 吉田亜希菜、田中里志「シャジクモ類卵胞子化石から推定する古環境」『フォーラム理科教育』第10号、「フォーラム理科教育」研究会、2009年3月、41-46頁、NAID 120006397664 
  83. ^ a b c Kalin, Margarete; Smith, Martin P. (2007). “Germination of Chara vulgaris and Nitella flexilis oospores: What are the relevant factors triggering germination?”. Aquatic Botany 87: 235-241. 
  84. ^ Henderson (1961), p. 12.
  85. ^ Henderson (1961), p. 4.
  86. ^ a b 峯一朗「海藻類の多様な生活史とそこにみられる生物相互作用」『海洋と生物』第27巻第6号、生物研究社、2005年12月、559-565頁、ISSN 0285-4376NAID 40007099319 
  87. ^ 正置富太郎、藤田大介、秋岡英承「エゾイシゴロモ(紅藻サンゴモ科)上におけるマコンブの発芽について」『北海道大学水産学部研究彙報』第32巻第4号、北海道大學水産學部、1981年11月、349-356頁、ISSN 00183458NAID 120000973690hdl:2115/23772 
  88. ^ a b c 内田卓志「室蘭産渦鞭毛藻Scrippsiella trochoideaのシスト形成・発芽に及ぼす温度の影響」『南西海区水産研究所研究報告』第27号、南西海区水産研究所、1994年3月、243-249頁、ISSN 0388841XNAID 40002788987 
  89. ^ Hiroshi Yasumori (1990). “Effect of Low-temperature on Basidiospore Germination of Tricholoma matsutake”. Bulletin of Gumma Prefectural Women's College 10: 107-114. NAID 110001234215. 
  90. ^ 内藤繁男、杉本利哉「Thanatephorus cucumeris 担子胞子の発芽に及ぼす温度, 空気湿度および直射日光の影響 (昭和54年度 日本植物病理学会大会講演要旨)」『日本植物病理學會報』第45巻第4号、1979年、523-524頁、doi:10.3186/jjphytopath.45.515NAID 110002740112 
  91. ^ a b c d e 太田明「マツタケの胞子の発芽と菌糸の特性」『森林科学』第53巻、日本森林学会、2008年、35-36頁、doi:10.11519/jjsk.53.0_35NAID 110006792888 
  92. ^ a b c 黒田久寅、熊野明美、岡本幸子「抗糸状菌剤に関する研究(I) : 糸状菌胞子発芽時の生理, 生化学的研究」『衛生化学』第10巻、日本薬学会、1964年、165-168頁、doi:10.1248/jhs1956.10.165NAID 110003643762 
  93. ^ Sato, Norio (1994). “Effect of Water Temperature on Direct Germination of the Sporangia of Phytophthora infestans”. Annals of the Phytopathological Society of Japan 60 (2): 162-166. 
  94. ^ Sato, Norio (1994). “Effect of Some Inorganic Salts and Hydrogen Ion Concentration on Indirect Germination of the Sporangia of Phytophthora infestans”. Annals of the Phytopathological Society of Japan 60 (4): 441-447. 
  95. ^ a b c d e 森山龍一, 昌山敦, 加藤志郎, 角田秀典「食品の変敗や食中毒の誘因となる細菌胞子の発芽に関わるリパーゼ」『生物機能開発研究所紀要』第8号、中部大学生物機能開発研究所、2008年3月、47-52頁、ISSN 1880-7941NAID 120006518387NDLJP:9283412 
  96. ^ 小山・清和 (2009)、337頁。
  97. ^ 藤井義晴、渋谷知子、安田環「発芽・生育試験による雑草・作物からの他感作用植物の検索」『雑草研究』第35巻第4号、1990年、362-370頁、doi:10.3719/weed.35.362NAID 130003996086 
  98. ^ a b 高辻正基 編『植物工場ハンドブック』東海大学出版会、1997年、159頁。ISBN 978-4925085731 
  99. ^ 沢口敦史, 佐藤導謙「北海道中央部における春播コムギの初冬播栽培に関する研究 : 適正播種量について」『日本作物學會紀事』第70巻第4号、日本作物學會、2001年12月、505-509頁、doi:10.1626/jcs.70.505ISSN 00111848NAID 110001742417 
  100. ^ 藤谷知子, 多田幸恵, 矢野範男「除草剤クロルプロファムによる溶血性貧血と脾臓における病理学的変化の可逆性」『東京都健康安全研究センター研究年報』第55号、東京都健康安全研究センター、2004年、319-326頁、ISSN 13489046NAID 40007003308 
  101. ^ 内野彰, 山口誠之「ジクワット・パラコートがノビエ種子及び水稲種子の発芽後生育に及ぼす影響」『東北農業研究』第58号、東北農業試験研究協議会、2005年12月、39-40頁、ISSN 0388-6727NAID 220000107359 
  102. ^ 古原洋、内野彰、渡邊寛明「スルホニルウレア系除草剤抵抗性イヌホタルイ(Scirpus juncoides Roxb.var.oh wianus T.Koyama)の低温条件下での発芽」『雑草研究』第46巻第3号、2001年、175-184頁、doi:10.3719/weed.46.175NAID 110003930835 
  103. ^ 冨永達「雑草のALS阻害剤抵抗性生物型の種子発芽特性」『雑草研究』第52巻第1号、2007年、36-40頁、doi:10.3719/weed.52.36NAID 110006242787 
  104. ^ 市原実、和田明華、山下雅幸、澤田均、木田揚一、浅井元朗「帰化アサガオ類の種子は火炎放射およびその後の湛水処理で全滅する」『日本作物學會紀事』第53巻第2号、日本雑草学会、2008年、41-47頁、doi:10.3719/weed.53.41NAID 130004503998 
  105. ^ Moore, John; Sandiford, Libby; Austen, Liz; Poulish, Grey (2006). “Controlling Gorse Seedbanks” (PDF). Fifteenth Australian Weeds Conference: 283-286. http://www.caws.org.au/awc/2006/awc200612831.pdf. 
  106. ^ 寄生雑草ストライガの生理生態学的特性の解析と防除戦略の構築” (PDF). アジア・アフリカ学術基盤形成事業 平成20年度 実施報告書. 2011年11月24日閲覧。
  107. ^ 前田智雄、前川健二郎、戸田雅美、大島千周、角田英男、鈴木卓、大澤勝次「ブロッコリースプラウトの生育およびポリフェノール含量に及ぼす補光光質の影響」『植物環境工学』第20巻第2号、2008年、83-89頁。 
  108. ^ 渡辺満、清水恒「ダッタンソバスプラウトのフラボノイド組成」『東北農業研究』第57巻、2004年、267-268頁、NAID 80017262648 
  109. ^ a b 白川隆、我孫子和雄「野菜の実生幼苗における大腸菌の消長」『野菜茶業研究所研究報告』第4巻、2006年、29-37頁。 
  110. ^ 間野康男「発芽玄米の食品学的機能」『北海道文教大学研究紀要』第30巻、2006年、37-44頁、NAID 110004798488 
  111. ^ 北本豊「食用・薬用きのこの育種にかかる最近の展開」『木材学会誌』第52巻第1号、2006年、1-7頁、doi:10.2488/jwrs.52.1NAID 10017179215 
  112. ^ 石川輝、石井健一郎「有害有毒赤潮生物のシスト発芽研究における進展と将来展望 (これからの赤潮学)」『海洋と生物』第29巻第5号、2007年、411-417頁。 
  113. ^ a b 高川晋一、西廣淳、上杉龍士、後藤章、鷲谷いづみ「霞ヶ浦における土壌シードバンクからのアサザ個体群再生のための順応的な実践」『保全生態学研究』第14巻第1号、2009年、109-117頁、NAID 110007226008 
  114. ^ 大貫真樹子、谷口伸二、小畑秀弘「表土シードバンクを吹付けに活用した施工事例-切土のり面における施工後2年3カ月の植生調査結果-」『日本緑化工学会誌』第30巻第3号、2005年、586-588頁、NAID 110002949670 
  115. ^ 高見徹、丸山俊朗、鈴木祥広、三浦昭雄「海藻(スサビノリ殻胞子)を用いた生物検定における適切な暴露時間と判定指標の検討」『水環境学会誌』第22巻、1999年、29-34頁、doi:10.2965/jswe.22.29NAID 10004451495 


「発芽」の続きの解説一覧




品詞の分類


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「発芽」の関連用語

発芽のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



発芽のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの発芽 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS