電界効果トランジスタとは? わかりやすく解説

Weblio 辞書 > 同じ種類の言葉 > 電気 > 電気化学 > トランジスタ > 電界効果トランジスタの意味・解説 

電界効果トランジスタ

読み方でんかいこうかトランジスタ
別名:ユニポーラトランジスタ
【英】Field Effect Transistor, FET

電界効果トランジスタとは、電圧入力によって発生させた電界により電流制御するトランジスタのことである。

電界効果トランジスタには、ソースドレインのほかにゲート呼ばれる電極設けられている。ゲート電圧をかけると電界生じソースドレインの間を流れ電子(あるいは正孔)の流れ任意にせき止め電流制御することができる。

電界効果トランジスタは、単なるトランジスタバイポーラトランジスタ)に比べて小型化が容易であるため、集積回路などを構成する素子としてよく用いられている。特に、電界効果トランジスタの中でも金属酸化膜半導体MOS)の構造をもったMOS型電界効果トランジスタMOSFET)は、論理回路素子としてデジタル回路多く使用されている。

なお、バイポーラトランジスタ電子正孔2種類キャリアとして持つのに対して、電界効果トランジスタは電子正孔いずれか1種類だけ扱うので、バイ(2)に対してユニ(1)を意味するユニポーラトランジスタ」とも呼ばれる


参照リンク
半導体/電子デバイス物理 - (甲南大学理工学部
電子回路のほかの用語一覧
電子回路・電子部品:  3端子レギュレータ  ダイオード  ダンピング抵抗  電界効果トランジスタ  定電流回路  定電圧回路  データセパレータ回路

電界効果トランジスタ

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/03/04 03:43 UTC 版)

パッケージ されたMOSFETの一例

電界効果トランジスタ(でんかいこうかトランジスタ、Field effect transistor, FET)は、半導体の内部に生じる電界によって電流を制御する方式のトランジスタである。

微細かつ平面的なものを大量に製造する技術が確立されており、集積回路に搭載されている半導体素子としては最も一般的である。一般的なスマートフォンパーソナルコンピュータに搭載されているCPUには、1億個以上のFETが組み込まれている。

この記事では主にSiなどの無機半導体によるものについて述べる。有機半導体を用いたものについては有機電界効果トランジスタを参照。

概要

FETは、ゲート電極電圧を加えることでチャネル領域に生じる電界によって電子または正孔の密度を制御し、ソース・ドレイン電極間の電流を制御するトランジスタである。トランジスタの動作原理には大きく分けて二つの方式があり、電子と正孔の2種類のキャリアの働きによるバイポーラトランジスタに対して、FETはいずれか1種類のキャリアだけを用いるため、ユニポーラトランジスタと呼ばれる。 FETは、制御点であるゲートへの電圧駆動で動作する。対してバイポーラトランジスタはベースに対する電流駆動である。

製作方法と構造での主な種類として、接合型FET(ジャンクションFET, JFET,J-FET)とMOSFETに大別される。さらにゲート電極に金属素材を用いたMESFETがある。 チャネルの種類による分類でn型とp型が存在する。

端子

P型チャネルJFET模式図

FETには主な3種類の端子「ゲート」「ソース」「ドレイン」がある。ジャンクションFETは通常、以上の3端子のみを持つ。

N型チャネルMOSFET模式図

MOSFETでは「ゲート」「ソース」「ドレイン」「バックゲート/バルク/サブストレート/ボディ(半導体チップ基板で呼称が一定していない)」の4端子で構成される。チャネルの種類によりp型チャネルの PMOSとn型チャネルのNMOSの2種類がある。MOSFETが個別にパッケージされたディスクリート部品では4端子が別々に出ているものも少数存在するが、一般的にはソースとバックゲートを内部で直結した3端子になっており、回路図記号はその構造を反映してバックゲートが省略されることもある。

特殊なものとしては、1つのチャネルに複数のゲートがあるマルチゲート(2つならダブルゲート)のFET(マルチゲート素子も参照)や、2つのFETを組み合わせたデュアルFETがある(バイポーラのトランジスタと同様、同一のシリコンチップに作り込んであって特性が揃っている、というものもあれば、単に同一のパッケージ内に2個入っているだけのものもある)。

構造

高耐圧パワーMOSFETなど特殊なFETの品種を除いて、通常のFETはソースとドレインは対称構造であるため物理的な違いはなく、電流を流す向きにより便宜的にソースとドレインとしている。p型チャネルは高電位側がソース/低電位側がドレイン、n型チャネルは高電位側がドレイン/低電位側がソースとなる。ただし前述のようにディスクリートの3端子のMOSFETはソースとバックゲートが内部で直結されているため、ソースとドレインは逆にできない。

エンハンスメントモードのn型チャネルMOSFET回路図記号

構造上、MOSFETのバックゲートとソースおよびドレインの間にはpn接合があり、寄生ダイオードと呼ぶ。MOSFETの回路図記号の中央に書かれることがある矢印は、この寄生ダイオードの順方向バイアスを示している(横に別に大きく描くこともある)。パワーMOSFETで誘導性負荷やモータを駆動する際、オフ時の過渡的な逆起電力を逃すためのフリーホイールダイオードとして働かせるようにすると有用である。寄生ダイオードを通してバックゲートから電流が流れないようにするため電位がp型チャネルではバックゲート≧ソース≧ドレイン、n型チャネルではドレイン≧ソース≧バックゲートになるように接続する。つまり、ドレイン・ソース間の電流は、矢印と反対方向に流れる。

チャネル

FETのドレイン・ソース間に流れる電流が通過する領域をチャネルという。半導体にn型とp型が存在するのと同様、チャネルにはn型チャネルとp型チャネルの2種類が存在する。n型チャネルでは負電荷 (negative charge) を帯びた電子が、p型チャネルでは正電荷 (positive charge) を帯びた正孔がキャリアとなる。ゲート電圧によりチャネルに生じる電界がキャリアを集め、もしくは斥けることでキャリア濃度が変化し、したがって抵抗率が変化する。ここで、チャネルの型はFETの動作領域において導電に寄与するキャリアのタイプに基いて決まるものであり、実際のチャネルを構成する半導体のn型・p型と一致しない場合がある点に注意が必要である。実際に、HEMTではチャネル部分の半導体はi型であり、MOSFETでは、n型チャネルの場合、p型の半導体中の反転層を電子が流れることになる。このチャネルの型を示すため、FETのタイプの前にnやpの文字をつけて表すこともある(例えば、NMOS、PMOS)。

なお、一般に使用されるCMOS(相補型MOS、Complemetary MOS の略)は、NMOSとPMOSを組み合わせた構造であることを示し、CMOSと呼ばれるMOSのタイプがあるわけではない。

分類

ゲート電圧とドレイン電流の関係による分類

エンハンスメントモード (enhancement mode) 動作 = ノーマリーオフ (normally off)
ゲート電圧をかけないときはチャネルが存在せずドレイン電流が流れないもの。入力が電流か電圧かの違いがあるが、バイポーラトランジスタの動作特性に似ている。MOSFETのほとんどはこちら。回路図記号では、縦棒を区切ってノーマリーオフであることを表現する。
ディプリーションモード (depletion mode) 動作 = ノーマリーオン (normally on)
ゲート電圧をかけないときもチャネルが存在しドレイン電流が流れるもの。逆電圧(ピンチオフ電圧)が掛かると電流が止まる。真空管の動作特性に似ている。JFETは全てこちら。ディスクリートのMOSFETでは、広く市販されているものでは極く一部の高周波小信号用の品種のみ。また、集積回路技術でCMOSが一般的になる以前に、NMOS方式の一種のdepletion-load NMOSのVdd側に使う、という用法があり、Z80など8ビット時代、ないし16ビット時代の初期のマイクロプロセッサのいくつかのオリジナル版はそれのことがある。
ゼロスレッショルド
以上の2種類の動作のちょうど中間で、ほぼ0V付近に閾値電圧があるように製造時に調整されたMOSFET。閾値電圧は製造バラツキが比較的大きいため、従来はそのような市販製品は無かったが、近年の技術開発により市販されるようになった。

ゲート接合部の構造による分類

MOSFET(MOS = Metal-Oxide-Semiconductor、金属-酸化物-半導体)
ゲート金属電極の下の半導体部分表面が酸化膜による絶縁膜になっている。現在の集積回路の主流となっている。特にP/N両型を相補的に利用するCMOS型が多用されている。
接合形(Junction FET, JFET)
ゲート部分がpn接合になっている。
金属半導体形(Metal Semiconductor FET, MESFET)
ゲート部分が金属電極と半導体の直接接合(ショットキー接合)になっているもの。

n型チャネル接合型FETのモデル

n型チャネル接合型fetの構造図

MOSFETについてはそちらの記事を参照のこと)

接合型 FET は通常ゲート端子がドレイン・ソース両端子よりも低い電圧で用いる。このときゲート端子は高インピーダンスでほとんど電流を流さない。よって考えるべき電流はドレインからソースへ流れる電流 iDS のみである。 ソース電圧を基準に取り、ゲート電圧を vGS (≤ 0)、ドレイン電圧を vDS と表せば、iDS はこれらの関数としてモデル化される。 ただし以下では vDS ≥ 0 とする。

n型チャネル接合型FETの電圧−電流特性グラフ。

この関数は、定義域をオーム領域ohmic region, または線型領域)、飽和領域 (saturation region)、ピンチオフ領域 (pinch-off region) という3つの領域に分割する。ピンチオフ領域はゲート電圧がピンチオフ電圧 (pinch-off voltage) Vp とよばれる負の決まった電圧以下の領域である。この領域では電界によりチャネルにキャリアが存在しなくなり(空乏層)、ドレイン–ソース間に電流は流れない。すなわち、

出典は列挙するだけでなく、脚注などを用いてどの記述の情報源であるかを明記してください。記事の信頼性向上にご協力をお願いいたします。2016年6月
  • 最新FET(電界効果トランジスタ)規格表 各年度版(CQ出版社) - 1968年版(初版)から1986年版までは個別特性図が付いていた。1987年版から個別特性図ははずされた。1994年版から初期のFETの規格が外された。
  • S. M. Sze, (1985). Semiconductor devices, physics and technology. New York: John Wiley & Sons 
  • S.M.ジィー 『半導体デバイス―基礎理論とプロセス技術』(第2版)産業図書、2004年。ISBN 4782855508 

関連項目


電界効果トランジスタ (FET)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/04/27 07:03 UTC 版)

ジョン・バートランド・ジョンソン」の記事における「電界効果トランジスタ (FET)」の解説

ジョンソンは、ユリウス・エドガー・リリエンフェルト1928年アメリカ合衆国特許第 1,900,018号に基き電界効果トランジスタを最初に制作した一人であるとされている。 1949年合衆国特許局への宣誓証言において、ジョンソンは「――変調度は 11 パーセント良くないが、――有効出力充分であり――原理的に増幅器として機能する」 としている。その一方で1964年記事においてジョンソンは、リリエンフェルト特許操作性否定し、「私は、リリエンフェルト機構彼の設計に基づき再現することを慎重に試みたが、増幅変調確認できなかった」 とも述べている。

※この「電界効果トランジスタ (FET)」の解説は、「ジョン・バートランド・ジョンソン」の解説の一部です。
「電界効果トランジスタ (FET)」を含む「ジョン・バートランド・ジョンソン」の記事については、「ジョン・バートランド・ジョンソン」の概要を参照ください。

ウィキペディア小見出し辞書の「電界効果トランジスタ」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ

「電界効果トランジスタ」の例文・使い方・用例・文例

Weblio日本語例文用例辞書はプログラムで機械的に例文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。



電界効果トランジスタと同じ種類の言葉


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「電界効果トランジスタ」の関連用語

電界効果トランジスタのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



電界効果トランジスタのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
IT用語辞典バイナリIT用語辞典バイナリ
Copyright © 2005-2024 Weblio 辞書 IT用語辞典バイナリさくいん。 この記事は、IT用語辞典バイナリの【電界効果トランジスタ】の記事を利用しております。
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの電界効果トランジスタ (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaのジョン・バートランド・ジョンソン (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。
Tanaka Corpusのコンテンツは、特に明示されている場合を除いて、次のライセンスに従います:
 Creative Commons Attribution (CC-BY) 2.0 France.
この対訳データはCreative Commons Attribution 3.0 Unportedでライセンスされています。
浜島書店 Catch a Wave
Copyright © 1995-2024 Hamajima Shoten, Publishers. All rights reserved.
株式会社ベネッセコーポレーション株式会社ベネッセコーポレーション
Copyright © Benesse Holdings, Inc. All rights reserved.
研究社研究社
Copyright (c) 1995-2024 Kenkyusha Co., Ltd. All rights reserved.
日本語WordNet日本語WordNet
日本語ワードネット1.1版 (C) 情報通信研究機構, 2009-2010 License All rights reserved.
WordNet 3.0 Copyright 2006 by Princeton University. All rights reserved. License
日外アソシエーツ株式会社日外アソシエーツ株式会社
Copyright (C) 1994- Nichigai Associates, Inc., All rights reserved.
「斎藤和英大辞典」斎藤秀三郎著、日外アソシエーツ辞書編集部編
EDRDGEDRDG
This page uses the JMdict dictionary files. These files are the property of the Electronic Dictionary Research and Development Group, and are used in conformance with the Group's licence.

©2024 GRAS Group, Inc.RSS