ローンチ・ヴィークル

宇宙飛行 |
---|
![]() |
歴史 |
応用 |
宇宙機 |
打ち上げ |
宇宙飛行の種類 |
宇宙関連の組織 |
![]() |
ローンチ・ヴィークル(launch vehicle)またはキャリア・ロケット(carrier rocket)とは地球から宇宙空間に人工衛星や宇宙探査機などのペイロードを輸送するのに使用されるロケット。日本語では打上げ機と呼ばれることもある。ローンチ・システム(launch system)と言った場合はローンチ・ヴィークル、発射台、その他打上げに関する施設を含む[1](「システム」の記事も参照)。
速度が低ければ、ペイロードが地表に戻る弾道飛行(ballistic flight、あるいはsub-orbital flight)となる。一般に観測ロケットや軍事目的のミサイル等は弾道飛行をする。通常、弾道飛行は放物線であると考えることが多い。しかしそれは厳密には、地面が平らで地球の中心が十分に遠い、とした近似であり、正確には楕円軌道の一部である。そして弾道飛行における頂点は「半分以上が地球内部に潜っている楕円軌道の遠地点」である。
この遠地点の付近を、一般には地球の大気の影響が十分に薄くなった高度に取って、その前後でさらにロケットエンジンを噴射し加速し続ければ、前述の地球内部に潜っている楕円軌道における近地点がどんどん上がってゆくように軌道が変化し続ける。そして近地点も地球の大気の影響が十分に薄い高度になれば、その軌道はもはやペイロードが地球に(すぐに)戻ることはない、次に述べるような人工衛星の、軌道(orbit)となる(遠地点と近地点の高度が等しい場合が円軌道である)。なお、後述するように「軍用の飛翔体の場合は弾道ミサイルとして区別される」といった区別のしかたが一般的であって、力学的には同じ所もあれば厳然として違う所もあるのであるが、マスコミや、専門家でないマニア等による説明には、この段落で説明したような力学は、意識されていない場合が見受けられる。
ペイロードが地球周回軌道を周り続ける人工衛星の場合は、ローンチ・ヴィークルにより第一宇宙速度(理論上、海抜0 mでは約 7.9 km/s = 28,400 km/h[注 1])まで加速させられて軌道に分離・投入される。またペイロードが地球周回軌道を離れる宇宙探査機の場合は、さらに高速の第二宇宙速度(いわゆる「地球脱出速度」)まで加速させられる。一方、ペイロードの目的によっては軌道が弾道飛行の場合もあり、特にペイロードの弾頭に爆発物などを載せて目的地に着弾させる軍用の飛翔体の場合は弾道ミサイルとして区別される。
「宇宙」の定義が、宇宙開発より古い宇宙空間物理の観点があることなど[2]から軌道速度とは関係なく高度で考えられることが多いため、厳密な区分は不可能と考えられるが、日本ではよく「宇宙ロケット」と「観測ロケット」と呼び別ける(宇宙ロケット以外のほとんどのロケットのペイロードの目的が観測というためもある)。総合的な「打上げシステム」としての観点からはむしろ、「宇宙」の定義を高度ではなく軌道で与えたほうがすっきりはする。
種別・特徴
使い捨て型ローンチ・ヴィークル (expendable launch vehicle) は一度きりの使用を目的に設計される。これらは通常ペイロードと切り離された後、大気圏再突入時に崩壊する。一方、再使用型ローンチ・ヴィークル (reusable launch vehicle) はそのままの状態で回収され、再び打上げに使用される。ロケットを使用しないローンチ・システムは今のところ概念的なものに過ぎない。
ローンチ・ヴィークルはしばしば軌道へ送り込むことが可能な質量の量で特徴付けられる。例えば、プロトンロケットは低軌道に22000kgのペイロード能力を有する。またロケットの段数で特徴付けられることもあり、ほとんどは2から4の多段ロケットである。多段式でないローンチ・ヴィークルとして単段式宇宙輸送機 (SSTO) という概念が存在するが、開発が成功した事例はない。
特定のローンチ・ヴィークルについて語られる際、必ず述べられるその他の事項として、所属する国家、打上げに関して責任を負う宇宙機関、およびヴィークルの製造、打上げを行う会社やコンソーシアム、がある。
打上げプラットフォーム
- 地上: スペースポート、固定式ミサイルサイロ[3]
- 海上: 固定式プラットフォーム(サン・マルコ)、移動式プラットフォーム(シーローンチ)、潜水艦[4]
- 空中発射式: 航空機(ペガサス、ストラトローンチ・システムズ、ランチャーワン)、気球(ロックーン)
サイズ
- 観測ロケット: 軌道に到達する能力がなく、弾道飛行を行うのみ。
- 超小型衛星打上げ機: 低軌道へ100kg未満までのペイロード能力を有する[5]
- スモールリフト・ローンチヴィークル: 低軌道に2,000kgまでのペイロード能力を有する[6]。
- ミディアムリフト・ローンチヴィークル: 低軌道に2,000kgから20,000kgまでのペイロード能力を有する[6]。
- ヘヴィーリフト・ローンチヴィークル: 低軌道に20,000kgから50,000kgまでのペイロード能力を有する[6]。
- スーパーヘヴィーリフト・ローンチヴィークル: 低軌道に50,000kg以上のペイロード能力を有する[6][7]。
関連項目
脚注
注釈
出典
- ^ See for example: NASA Kills 'Wounded' Launch System Upgrade at KSC Archived 2006年2月28日, at the Wayback Machine. Florida Today
- ^ 他に、米ソおよび米国内の宇宙開発競争で「一番乗り」は誰か、ということが定義により変わるため、といった事情もある。
- ^ 例としてはICBMからの転用ロケットであるストレラなど。
- ^ 例としてはSLBMからの転用ロケットであるShtil'やヴォルナなど。
- ^ Small and sweet: NASA wants a dedicated launch vehicle for cubesats
- ^ a b c d NASA Space Technology Roadmaps - Launch Propulsion Systems, p.11: "Small: 0-2t payloads, Medium: 2-20t payloads, Heavy: 20-50t payloads, Super Heavy: >50t payloads"
- ^ HSF Final Report: Seeking a Human Spaceflight Program Worthy of a Great Nation, October 2009, Review of U.S. Human Spaceflight Plans Committee, p. 64-66: "5.2.1 The Need for Heavy Lift ... require a “super heavy-lift” launch vehicle ... range of 25 to 40 mt, setting a notional lower limit on the size of the super heavy-lift launch vehicle if refueling is available ... this strongly favors a minimum heavy-lift capacity of roughly 50 mt ..."
外部リンク
- S. A. Kamal, A. Mirza: The Multi-Stage-Q System and the Inverse-Q System for Possible application in SLV, Proc. IBCAST 2005, Volume 3, Control and Simulation, Edited by Hussain SI, Munir A, Kiyani J, Samar R, Khan MA, National Center for Physics, Bhurban, KP, Pakistan, 2006, pp 27–33 Free Full Text
- S. A. Kamal: Incorporating Cross-Range Error in the Lambert Scheme, Proc. 10th National Aeronautical Conf., Edited by Sheikh SR, Khan AM, Pakistan Air Force Academy, Risalpur, KP, Pakistan, 2006, pp 255–263 Free Full Text
- S. A. Kamal: The Multi-Stage-Lambert Scheme for Steering a Satellite-Launch Vehicle, Proc. 12th IEEE INMIC, Edited by Anis MK, Khan MK, Zaidi SJH, Bahria Univ., Karachi, Pakistan, 2008, pp 294–300 (invited paper) Free Full Text
- S. A. Kamal: Incompleteness of Cross-Product Steering and a Mathematical Formulation of Extended-Cross-Product Steering, Proc. IBCAST 2002, Volume 1, Advanced Materials, Computational Fluid Dynamics and Control Engineering, Edited by Hoorani HR, Munir A, Samar R, Zahir S, National Center for Physics, Bhurban, KP, Pakistan, 2003, pp 167–177 Free Full Text
- S. A. Kamal: Dot-Product Steering: A New Control Law for Satellites and Spacecrafts, Proc. IBCAST 2002, Volume 1, Advanced Materials, Computational Fluid Dynamics and Control Engineering, Edited by Hoorani HR, Munir A, Samar R, Zahir S, National Center for Physics, Bhurban, KP, Pakistan, 2003, pp 178–184 Free Full Text
- S. A. Kamal: Ellipse-Orientation Steering: A Control Law for Spacecrafts and Satellite-Launch Vehicles, Space Science and the Challenges of the twenty-First Century, ISPA-SUPARCO Collaborative Seminar, Univ. of Karachi, 2005 (invited paper)
- Christmas turns bad for ISRO, GSLV mission fails.
打ち上げ機
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/06/15 15:53 UTC 版)
開拓者シリーズ:開拓者1号(开拓者一号)、開拓者1号A(开拓者一号甲)、開拓者1号B(开拓者一号乙)は新しい衛星打ち上げ固体燃料ロケット。 快舟:新型の小型衛星打ち上げロケット。 長征2号E(A):中国の宇宙ステーション用のロケット。12のロケットエンジンで低軌道への打ち上げ能力は14トン 長征2号F/G:長征2号Fに脱出装置を取り外したもの。無人宇宙機の打ち上げに用いられる。 長征3号B(A):大型液体補助推進モータによる強力版。LEOに打ち上げ能力最大13トン。 長征4号:3段式ロケット、極軌道や太陽同期軌道に人工衛星を投入する目的で設計された 長征5号:次世代衛星打ち上げロケット。 長征6号:小型衛星の打ち上げニーズに答える低価格・高品質なロケット、2015年9月20日に初打ち上げに成功した 。 長征7号:嫦娥第4段階で使用されるロケット、2016年6月に初めて打ち上げられた。 長征11号:固体燃料打ち上げ機。2015年9月25日に初打ち上げを行い成功した。2019年には、海上から船舶を利用した打ち上げにも成功した。 長征8号:新型中型キャリアロケット、2020年12月22日13時37分(日本時間)、海南島にある文昌航天発射場から、初打ち上げに成功した。 長征9号:直径10メートルサイズで4基のブースターを搭載する地球低軌道(LEO)に140トンの打ち上げ能力を持つ超大型ロケット、2030年までの打ち上げが予定。 921-3計画(英語版) — 第二世代有人宇宙船。中国版スペースシャトル。 月ロケット:月へのホーマン遷移軌道に50トンペイロード可能なロケット。2006年の会議で話し合われた
※この「打ち上げ機」の解説は、「中国の宇宙開発」の解説の一部です。
「打ち上げ機」を含む「中国の宇宙開発」の記事については、「中国の宇宙開発」の概要を参照ください。
「打ち上げ機」の例文・使い方・用例・文例
- 打ち上げ機のページへのリンク