電磁波 特徴

電磁波

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/12/14 01:53 UTC 版)

特徴

電磁波は波長によって様々な特徴を持つ。

最も波長の長い電波は、進行方向に多少の障害物があっても進行することができる。このため、通信放送などの長距離の情報送信に使用されることが多い。テレビラジオ携帯電話などが代表的である。

電波よりも波長の短いは、物質に吸収されて化学反応発熱などの相互作用を生じることがある。この現象はが見える理由でもあるが、他に植物の光合成リソグラフィーなどが該当する。

さらに波長が短いX線になると、光子の持つエネルギーが大きいため、分子に吸収されて熱振動に変わることはなく、物質を構成する電子などに直接作用する(分子の熱振動に比べて原子を構成する電子の励起エネルギーは大きい)。そのため比重の小さい物質ほどよく透過するようになる。この現象を利用することで、レントゲン写真X線CTを撮影することができる。工業や自然科学の研究の場では、X線回折X線光電子分光など物質の構造や元素の分析に用いられている。

X線やそれより短波長の領域は放射線の一種として扱われ、ガンマ線という呼ばれ方も使われる。X線とガンマ線の境は明確に定められてはいない。

X線よりさらに波長が短い領域になると、比重の重い物質で減衰は可能でも反射は困難となる。波長が1.2pm(10E-12m)程度より小さい領域では対生成を起こすようになる。

影響

本項では「悪影響」に関して記述している。

動物(ヒトを含む)への影響

家庭用簡易電磁波測定器(TriField Meter Model TF100XE)

紫外線などのエネルギーの大きな電磁波は、遺伝子に損傷を与えるため発癌性を持つ。X線ガンマ線などの電離放射線については、年間許容被曝量が法律によって決められている。

低周波

低周波は、非電離放射線であるから遺伝子に直接には影響を与えないと考えられている[5]

国際がん研究機関 (IARC) が2001年に行った発癌性評価では、送電線などから発生する低周波磁場には「ヒトに対して発がん性がある可能性がある」 (Possibly carcinogenic to humans: Group 2B) と分類した[6]。これは「ガソリンエンジン排ガス、鉛、ワラビ(食物)」などと同じレベルに当たる。なお、このレベルの分類に「コーヒー」も含まれていると誤解されることがあるが、国際がん研究機関がこのレベルに分類したのは、種々の植物に含まれる化学成分の「コーヒー酸」であって、飲料のコーヒーではない。

静的電磁界と超低周波電界については「ヒトに対して発がん性を分類できない」 (cannot be classified as to carcinogenicity in humans) と分類された。これは「カフェイン、水銀、お茶、コレステロール」などと同じレベルにあたる。

また、国立環境研究所 (NIES) が平成 9–11 年度に「超低周波電磁界による健康リスクの評価に関する研究」[7]を行った。

マイクロ波

高強度のマイクロ波には、電子レンジと同様に熱を生じるため生体に影響を与える可能性がある。このため、携帯電話などの無線機器などでは、人体の電力比吸収率 (SAR: Specific Absorption Rate 単位は[Watt/kg])を用いた規定値が欧州国際非電離放射線防護委員会(英語: International Commission on Non-Ionizing Radiation Protectionアメリカ合衆国連邦通信委員会などでは決められている[8]ほか、日本では国際非電離放射線防護委員会 (ICNIRP) の電波防護ガイドラインに基づき、周波数 300 GHz (波長 1 mm)までの電波について、人体への影響を評価している[9]。学会などでも比吸収率の計算(FDTD法)や人体を模した人体ファントムの組成の決定などが行われている。

調査

電磁波の健康への影響は調査自体が非常に難しい。一例を挙げると、アメリカ合衆国で公的機関国立環境健康科学研究所(英語: National Institute of Environmental Health Sciencesで Research and Public Information Dissemination(RAPID: 調査および公共への情報頒布)計画という国家単位での電磁波の健康に対する影響の研究が行われた。国立環境健康科学研究所 (NIEHS) が作成したパンフレットでは、臨床研究、細胞を用いた実験室での研究、動物を使用した研究、疫学研究の各分野を組み合わせ検証した結果でないと全体像が見えないと解説されている。 1995年、電磁波問題に関する調査報告書をアメリカ物理学会が発表。「癌と送電線の電磁波に関係があるという憶測には、何ら科学的実証が見られない」と声明。

1996年、全米科学アカデミーは

  1. 「細胞、組織そして生物(ヒトを含む)への商用周波電磁界の影響に関して公表されている研究の総合評価に基づき、現在の主要な証拠は、これらの電磁界への曝露が人の健康への障害となることを示していないと結論する。」
  2. 「特に、居住環境での電磁界の曝露が、ガン、神経や行動への有害な影響、あるいは生殖・成長への影響を生じさせることを示す決定的で一貫した証拠は何もない。」

という結論を出した[10][11]

1997年、アメリカ合衆国の国立癌研究所 (NCI) は 7 年間の疫学調査の結果から「小児急性リンパ芽球性白血病と磁場との関係は検知するにも懸念するにも微弱」であると発表。この調査の過程で、白血病患者の家庭と送電線の近隣での居住、双方に全く関係が見られなかった事が判明。これにより「関係がある」とされてきた統計学的分析結果は全てエラーデータとなり、1979年に疫学者ナンシー・ワートハイマー[注 3]とエド・リーパー[注 4]が作成した論文「小児白血病と送電線の磁場には関係がある (Electrical Wiring Configurations and Childhood Cancer)」[12]の主張が完全な間違いであることが証明される。NCI の調査結果は医学専門誌『ニューイングランド・ジャーナル・オブ・メディシン』に掲載[13]

アメリカ合衆国科学技術政策局は、それまでの送電線騒動の研究に費やされた予算を、送電線の移転、不動産価値の下落を含め 250 億ドル超と概算した。

1999年、カナダの五つの州において調査された結果が発表され上述の NCI の結果と酷似した結論が出される。

疫学調査の正確性に対し疑問が投げかけられることもたびたびある。日本では、2003年衆議院議員の長妻昭によって、国立環境研究所が行った「生活環境中電磁界による小児の健康リスク評価に関する研究」[7]が国会で取り上げられた[14]。長妻はこの研究報告の電気毛布等の小児白血病・脳腫瘍発症への影響に関するデータについて触れ、15 歳以下の小児の電気毛布等の使用に関する健康リスク評価および電磁波の影響に対する評価の正当性に疑問を呈した。この研究について政府は「交絡要因除去のための調査データであり電気毛布使用に対する健康リスク評価は直接行っていない」とし、調査そのものの正当性に関する指摘に対しては「優れた研究ではなかった、との評価がなされたところである」と回答している。電磁波そのものの影響については「子供部屋の平均磁界強度が 0.4 μT 以上の場合のみ健康リスクが上昇すること等が示唆されているが、本研究の結果が一般化できるとは判断できない」と回答している。

世界保健機関 (WHO) による2007年時点での公式見解
2007年6月に公表された、世界保健機関の公式見解を示すファクトシート322 (PDF) では、短期的影響に関しては「高レベル(100 μT よりも遙かに高い)での急性曝露による生物学的影響は確立されており、これは認知されている生物物理学的なメカニズムによって説明されています。」と評価された。一方、潜在的な長期的影響に関しては「小児白血病」と「小児白血病以外のその他の健康への悪影響」に分けて評価されており、小児白血病に関しては「全体として、小児白血病に関する証拠は因果関係と見なせるほど強いものではありません」と評価され、その他の影響に関しては超低周波磁界(Extremely Low Frequency Magnetic Field, ELF 磁界)曝露とこれら全ての健康影響との関連性を支持する科学的証拠は、小児白血病についての証拠よりもさらに弱いと結論付けている。いくつかの実例(すなわち心臓血管系疾患や乳がん)については、「ELF 磁界はこれらの疾病を誘発しないということが、証拠によって示唆されています」と評価された。
世界保健機関による2011年時点での公式見解
2011年5月31日、WHO(世界保健機関)のIARC(国際がん研究機関)は、携帯電話の電磁波と発がん性の関連について、限定的ながら「可能性がある」とする分析結果を発表した[15]携帯電話を耳にあてて長時間通話を続けると「脳などのを発症する危険性が上がる可能性がある (Group 2B)」とし、癌を発症する危険性を上げないための予防策としては、マイク付イヤホンを使用することを挙げた[15]
作業部会のジョナサン・サメット (Jonathan Samet) 委員長は「神経膠腫(しんけいこうしゅ=グリオーマ = 脳のがんの一種)や、耳の聴神経腫瘍になる危険性を高めることを示す限定的な証拠がある」とした。なお、IARC 幹部は、文字のメールを打つ形での携帯電話の使用[注 5]は、発がん性との関連はないと説明した[15]
なお、IARC は論文を多数検討した上で「根拠はまだ限定的である。さらなる研究が必要」とも述べた[15]。asahi.com の大岩ゆり記者は「それでも IARC がこのような決定をしたのは、少しでも健康に害を及ぼす可能性があるものは早めに注意喚起する、という WHO の予防原則からだ」と解説した[15]

機械への影響

現在のエレクトロニクス機器(電子機器)は、低電圧の信号を高インピーダンスで扱うことが普通であるため、環境中に強い電磁波が存在すると誤動作を生じやすい。その機器が誤動作を生じやすいか生じ難いかを測る指標としてイミュニティ (Immunity) がある。特に携帯電話からは比較的強い電磁波が発せられるため、航空機医療機器などへの影響が多数報告されている。

日本における航空機への影響と対策

航空機に関しては、携帯電話携帯型ゲーム機などの電磁波の影響による運行計器の誤作動が多数報告され、その中には大惨事になりかねない事態を引き起こした例もあったため、まず各航空会社で規制が行われるようになった。2004年には改正航空法によって禁止される機器が定められた。2007年3月に同法は改正され、携帯電話、パソコン携帯情報端末など電波を発する状態にあるものは常時使用禁止、電波を発しない状態のものでも離着陸時使用禁止とし、携帯音楽プレーヤーデジタルカメラテレビラジオなども離着陸時使用禁止と定められた。

ゲーム機に関しては、「ニンテンドーDS」や「PlayStation Portable (PSP)」といった無線LAN内蔵の製品が存在しており機内での使用も増えているにもかかわらず、それらが2004年の改正航空法および航空法施行規則では「離着陸時のみ作動させてはならない電子機器」として指定されてしまっていて仮に無線LANの電波を発射させていても法律上取り締まれないという危険な状態であったが、各航空会社が規制を行い、その後2007年の改正で解消された。

2007年3月「航空機内における安全阻害行為等に関する有識者懇談会」の報告書では次のような症状が報告されている。

  1. 無線にノイズが発生
  2. 衝突防止装置が誤作動し、回避指示が出た
  3. 自動操縦で上昇している時に突然横方向に25度傾いた
  4. 自動操縦装置で水平飛行中、高度が設定値から 400 ft (122 m) ずれた
  5. 着陸時に自動操縦装置の表示が大きくズレて元に戻らなくなった 

原因と推測されているのは携帯電話が 6 割強と最も多い。次いでパソコンが 1 割強。「障害が発生したケースの約 9 割において、電子機器を使用する者の存在が確認されている」とされ、「障害発生時に電子機器の使用を控えるようアナウンスしたところ、約 5 割で障害が復旧した」と報告されている。

2014年、規制緩和と常時接続できる設備が整ったため飛行中でも携帯電話での通話、インターネット接続、他、電子機器の利用が順次解禁となった[16]

日本における医療機器への影響と対策

植込み型心臓ペースメーカーへ携帯電話から電磁波による影響があるのは、2018年の総務省調査では最大でも 1 センチメートル (cm) の距離までであった[17]。この影響も、患者自身が携帯電話を離すことが可能で、影響から回復できるという調査結果になっている。ただし指針では15 cm以上離れることを推奨している[18]。なお、2002年の総務省調査では影響があるのは11 cmであり、指針は22 cm以上であった[19]。距離が異なっているのは、現在使用されていない第2世代移動通信方式での調査であることに一因がある。

その他

日本の公正取引委員会は、電磁波によるネズミ撃退器について、効果が認められないとして排除命令を出したことがある[20]

アメリカ軍は、電磁波を利用した非致死性兵器の研究を行っている(詳細はアクティブ・ディナイアル・システムを参照)

脚注


注釈

  1. ^ 数値 A の前に付く不等号 "< A" は「A より小さい」、"> A" は「A より大きい」領域を表す。 また "A–B" とダッシュの両辺に数値 A, B がある場合、「A から B の間」の領域を表す。 10n は 10 の n 乗を表す。たとえば 103 は 10 × 10 × 10 = 1000 と同じ数であり、10−31/10 × 1/10 × 1/10 = 1/1000 = 0.001 と同じ数である。
  2. ^ 1 eV はおおよそ 1.6 × 10−19 J に相当する。したがってプランク定数を eV/THz 単位で表せばおよそ h = 4.1 × 10−3 eV/THz である。たとえば振動数 3000 THz(波長約 100 nm)の光子のエネルギーは 3000 × 4.1 × 10−3 eV = 12.3 eV となる。これは水素原子の第一イオン化エネルギー 13.6 eV と同程度の大きさである。
  3. ^ Nancy Wertheimer. 標準的なドイツ語ではヴェアトハイマー、ヴェルトハイマーなどに近い。
  4. ^ Ed Leeper
  5. ^ 耳から離し、頭蓋骨から離した状態で、手で操作して使用すること。

出典

  1. ^ Max Planck, Zur Theorie des Gesetzes der Energieverteilung im Normalspektrum, Deutschen Physikalischen Gesellschaft Verhandlungen 2, 1900, pp. 237–245. pdf.
  2. ^ Max Planck, On the Law of Distribution of Energy in the Normal Spectrum , Annalen der Physik, volume 309, issue 3, pp. 553-563, 1901. pdf. Ueber das Gesetz der Energieverteilung im Norrnalspectrum の英訳版。
  3. ^ Albert Einstein, Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heurischen Gesichtspunkt , Annalen der Physik Band 17, pp. 132–148. pdf.
  4. ^ A. B. Arons and M. B. Peppard (Translators), Albert Einstein (Author), Concerning an Heuristic Point of View Toward the Emission and Transformation of Light , American Journal of Physics, volume 33, number 5, pp. 367-374, May 1965. pdf. 1905年の光量子仮説に関する論文の英訳版。
  5. ^ 飯島 純夫、電磁場が染色体に及ぼす影響、山梨医大誌 14 (1),1 - 5,1999。
  6. ^ WHOファクトシートNo.263,"電磁界と公衆衛生:「超低周波電磁界とがん」", 2001年10月 [1] (PDF)
  7. ^ a b https://www.nies.go.jp/kanko/tokubetu/setsumei/sr-035-2001b.html
  8. ^ 国際非電離放射線防護委員会(ICNIRP), "時間変化する電界、磁界及び電磁界による曝露を制限するためのガイドライン(300 GHz まで)", 1998年4月[2]
  9. ^ 総務省 電波利用ホームページ 電波環境の保護[3]
  10. ^ 関西電力,"電磁界に対する専門機関の見解"[4]
  11. ^ National Research Council,"Possible Health Effects of Exposure to Residential Electric and Magnetic Fields"(1997)[5]
  12. ^ Nancy Wertheimer, Ed Leeper, Electrical Wiring Configurations and Childhood Cancer , American Journal of Epidemiology, Volume 109, issue 3, pp. 273–284, 1979. 要旨
  13. ^ Martha S. Linet, Elizabeth E. Hatch, Ruth A. Kleinerman, Leslie L. Robison, William T. Kaune, Dana R. Friedman, Richard K. Severson, Carol M. Haines, Charleen T. Hartsock, Shelly Niwa, Sholom Wacholder, and Robert E. Tarone, Residential Exposure to Magnetic Fields and Acute Lymphoblastic Leukemia in Children , New England Journal of Medicine Vol. 337 No. 1, 3 July 1997.
  14. ^ 長妻昭, "電気毛布等の小児白血病・脳腫瘍発症への影響に関する質問主意書", 衆議院第156回国会 質問第126号, 平成15年7月11日提出 [6]それへの政府回答
  15. ^ a b c d e 携帯電話の電磁波「発がんの可能性も」 WHOが分析 ウェブ魚拓
  16. ^ 機内でも病院でも スマホ利用、進む規制緩和日本経済新聞 2014年9月
  17. ^ 総務省「電波の植込み型医療機器及び在宅医療機器等への影響に関する調査等」報告書 平成30年3月
  18. ^ 各種電波利用機器の電波が植込み型医療機器等へ及ぼす影響を防止するための指針 平成30年7月 [7]
  19. ^ 総務省報道資料, "電波の医用機器等への影響に関する調査結果", 平成14年7月2日 [8]
  20. ^ (無題)”. 平成11年度 公正取引委員会年次報告. 公正取引委員会 (2010年3月31日). 2011年10月15日閲覧。


「電磁波」の続きの解説一覧




電磁波と同じ種類の言葉


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「電磁波」の関連用語

検索ランキング

   

英語⇒日本語
日本語⇒英語
   



電磁波のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの電磁波 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS