真のクラスとは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 真のクラスの意味・解説 

クラス (集合論)

(真のクラス から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/03/06 02:36 UTC 版)

集合論及びその応用としての数学におけるクラスまたは(るい、: class)は、集合(または、しばしば別の数学的対象)の集まりで、それに属する全てのが共通にもつ性質によって紛れなく定義されるものである。「クラス」の正確な定義は、議論の基礎となる文脈に依存する。例えば、ツェルメロ=フレンケル集合論 (ZF) ではクラスは厳密には存在しないが、他の集合論(たとえば、フォン・ノイマン=ベルナイス=ゲーデル集合論 (NBG))では、「クラス」の概念は公理化されている(NBG の例だと、別の量 (entity) の要素にならないような量としてクラスが定義される)。

(どのような定式化を選んだとしても)「全ての集合の集まり」はクラスである。(ZF では厳密な言い方ではないが)このクラスだが集合でないようなものは真のクラス (proper class) と呼ばれ、集合となるようなクラス(つまり集合)は小さいクラス (small class) とも呼ばれる。例えば、全ての順序数からなるクラスや全ての集合からなるクラスは、多くの形式体系において真のクラスである。

集合論以外の文脈では「クラス」を「集合」の同義語として使うこともある。この用法はクラスと集合が現代的な集合論の用語法に基づく区別をされていなかった時代からある。19世紀以前の多くの"クラス"に関する議論は集合のことを指していた、もしくはもっと曖昧な概念を指していた。この意味でのクラスは「級」という訳語を当てることがある(たとえば滑らかさのクラスの C1-級など)。

与えられた型の代数的対象全ての集まりは、たいてい真のクラスをなす。例えば、全てのからなるクラス、全てのベクトル空間からなるクラス、など。圏論では、対象の集まりが真クラスをなすもの(または射の集まりが真クラスをなすもの)を大きい圏という。

超現実数 (en:Surreal number) 全体は、の公理を満たす対象による真クラスである。

集合論では、集合の集まりの多くは真クラスになってしまう。例えば、全ての集合からなるクラス、全ての順序数からなるクラス、全ての基数からなるクラスなど。

クラスが真クラスであることを証明する方法に、全ての順序数によるクラスとの間に全単射を与えるというものがある。この方法は、例えば自由完備束が存在しないことの証明などに使われる。

パラドックス

ラッセルのパラドックスなどの素朴集合論のパラドックスは「全てのクラスが集合である」という正しくない仮定によって説明される。厳格な基礎付けの下では、これらはパラドックスなのではなくて、ある種のクラスが真クラスであることの証明を示唆するものであると捉えることができる。ラッセルのパラドックスは「自分自身に属さない集合」全体が真のクラスになることを示唆するし、ブラリ=フォルティのパラドックスは全ての順序数からなるクラスが真のクラスであることを示唆している。

公理的集合論におけるクラス

ZFではクラスの概念を定式化することはできないので、クラスはメタ言語による同値な言明で置き換えることで扱うことになる。例えば、カテゴリ




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「真のクラス」の関連用語

真のクラスのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



真のクラスのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのクラス (集合論) (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS