溶食過程
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/05/04 14:17 UTC 版)
水H2Oに溶けた二酸化炭素CO2から炭酸H2CO3が生じ、炭酸と石灰岩の主成分である炭酸カルシウムCaCO3との化学反応によって溶食が進むものである。土壌中を浸透した地下水には多量の二酸化炭素が土壌空気からとけ込んでいる(大気から雨水に溶け込む量の数倍から百倍程度)。最初は微小な割れ目に沿って石灰岩が溶食されていくが、やがて水みちは大きくなり、いずれかの流れやすい流路を選んで水が流れるようになる。こうして流量が増えてくると、砂礫や砂などが流れ込むようになり、溶食以外に水流による侵食(磨食)も加わって洞窟と呼ばれるような大きな空間が形成される。空間がある程度大きくなると天井や壁面の崩落・崩壊が起こることがあり、空洞が一時的に埋まるが、地下川がある場合には局所的に流速が早くなり、溶食作用が強く働くようになって洞窟の拡大がより進行する。 この溶食過程を化学反応式で示すと次のようになる。 CaCO3 + CO2 + H2O → Ca(HCO3)2 反応の結果生じる炭酸水素カルシウムCa(HCO3)2はカルシウムイオンと炭酸水素イオンに分離した形でのみ存在し(つまり水に溶けている状態、その結果流れ去って溶食が起こる)、次のように記される。 Ca(HCO3)2→ Ca2+ + 2HCO3- 稀には火山性温/熱水中の硫酸H2SO4、あるいは石油鉱床等からくる地下水中の硫化水素H2Sの酸化によって生じる硫酸による溶食が働くことがあり、その化学反応式は次のように表される。 CaCO3 + H2SO4 → Ca2+ + SO42- + H2O + CO2 次に、洞窟形成環境を水文地質学的な観点からみると以下の3つの型(循環水帯型、地下水面型、飽和水帯型)に分けられるが、実際には各タイプの洞窟が時間的、空間的に組み合わさり、他の地質的な要因(石灰岩の岩質、非石灰岩の挟在・重なり・接触、割れ目系などの地質構造)も加わって複雑に発達していることが多い。このような地質的な要因は地表地形の溶食型にも大きく影響する。 雨水が直接に石灰岩体内に流れ込む場所として、ドリーネがある。ドリーネ底には大小さまざまの縦穴や斜めに落ち込んだ洞窟がある。多くの場合は泥や岩礫などで埋まっていて直接見ることができない。また、石灰岩以外の山地から流れてきた水流(他生谷)が石灰岩の地帯に入ったところにも、同じように洞窟が開口していることが多い(川の水が自然と石灰岩の河床の割れ目に浸透して涸れ谷となり、洞窟が見られないことも多い)。谷尻の洞窟へ流れ込んだ水は下方に地下水面まで流れ落ちていく(地下水面が浅くある所では、水は横穴を穿って流れ込んでいく)。このように地表流が地下へ流れ込んでいく所にある穴や洞窟を広くポノール(ponor; 語源はセルボクロアート語 / スロベニア語の窪地、英語ではほかにswallow hole【嚥穴】)と呼ぶ。起伏量の大きいカルスト地帯で、地下水面が深く、流量が十分にあると、ポノールは深い縦穴をつくる(代表例:新潟県の白蓮洞)。 地下水面に達した水は横方向へ流れ、次第に合流して主流へと成長し(地下水面の等高線的形状から地下水谷という)、最後には石灰岩体の下流部、山麓に開口した洞窟あるいは湧泉から再び地上へ流れ出る。地下水面に沿って溶食が進み、横断形が扁平な洞窟ができる。流量も多くなり、大型の横穴洞窟をつくることが多い。流域上流部や、地下水谷と地下水谷の間の尾根をつくる地域の地下水面は、降雨(季節)によって大きく高度を変えるので、地下水面に沿う洞窟は発達しにくいが、地下水谷では洞窟の発達によって排水能力が増すため、地下水面は安定的なものとなり、長大な洞窟形成が加速される(代表例: 山口県の秋芳洞や景清穴)。 地下水面帯よりも深層の地下水はふつう流れがほとんどないため、洞窟形成作用は大きくない。しかし水理的条件がととのうと、割れ目に沿って被圧性の地下水の流れが生じることがある。また混合溶食と呼ぶ炭酸による特殊な溶食作用も働く。飽和水帯(飽和帯とも)起源の洞窟は溶食作用が上下左右いずれの方向にも働いたことを示す円形や楕円形などの断面形を示し、時には地下水流が重力に逆らって上方へ向かって流れたことを示す流痕のある縦穴や斜洞が見られる。飽和水帯型の洞窟は、地盤の隆起によって排水された場合にのみ、人が入ることが可能になる(代表例: 熊本県の球泉洞)。
※この「溶食過程」の解説は、「カルスト地形」の解説の一部です。
「溶食過程」を含む「カルスト地形」の記事については、「カルスト地形」の概要を参照ください。
- 溶食過程のページへのリンク