地質の歴史
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/06/10 09:22 UTC 版)
月の地質の歴史は、月の地質年代尺度と呼ばれる6つの地質時代に大別できる。月の歴史は約45億年前に始まり、形成直後の月は融けた状態で、地球に非常に近い軌道を公転し、大きな潮汐力を受けていた。この潮汐力は、融けた月を、長軸が地球の方角を向く楕円体に変形させた。 月の地質の進化における最初の大きな出来事は、マグマの海の結晶化であった。マグマの海の深さは明らかではないが、いくつかの研究では、500kmかそれ以上であったことが示唆されている。この海で晶出した最初の鉱物は鉄とマグネシウムのケイ酸塩であるカンラン石と輝石である。これらは、周囲の融けた物質よりも密度が大きいために下部へ沈降した。結晶化が約75%進んだ後、より密度の小さい斜長石や長石が結晶化して漂うようになり、厚さ約50kmの地殻を形成した。その後、約1億年以内の間で、マグマの海の大部分が急速に結晶化し、最後に残ったKREEP(カリウム、希土類元素、リン)に富むマグマが、その後の数億年もの間、部分的に融けた状態で残った。このKREEPに富むマグマは、最終的に嵐の大洋と雨の海に集まったと考えられている。 月の地殻の形成直後あるいはその形成途中に、別の種類のマグマから、富マグネシウム(Mg-suite)ノーライトやトロクトライトが形成された。最近の理論では、富マグネシウム岩石に関連する深成活動の多くは嵐の大洋と雨の海の地域で行われ、これらのマグマは、その起源は未だ明らかではないものの、ある程度KREEPとの関連があると示唆されている。最古の富マグネシウム岩石の結晶化は、約38.5億年前である。しかし、深部まで月を掘削した最後の大きな衝突も、雨の海で起こったもので、38.5億年前である。そのため、富マグネシウム岩石の深成活動はもっと長く続き、若い深成岩が地下深くに存在している可能性がある 月のサンプルの分析により、かなりの割合の月の衝突盆地が約40億年前から38.5億年前の非常に短い期間に形成されたことが示唆されている。この仮説は後期重爆撃期と呼ばれる。しかしながら、雨の海形成に関連する衝突噴出物は、アポロ計画の着陸地点の全てで見出され得ると現在では考えられている。そのため、いくつかの衝突盆地(特に神酒の海)の形成年代と考えられているデータは、誤って雨の海の形成年代を見ているだけである可能性がある。 月の海は、かつて玄武岩質溶岩が流れた跡である。地球の溶岩と比べると鉄の含量が高く、粘度が低く、チタンを多く含むイルメナイトの含有率が高いものもある。約42億年前の玄武岩もあるが、玄武岩質火成活動の多くは、約30億年から35億年前に発生したものであり、(クレーターの数の計数に基づく)最も若いものはわずか10億年前であると考えられている。火山から数百kmの範囲に融けた玄武岩を吹き飛ばす火山砕屑岩型の火山もあるが、ほとんどの月の海は、衝突盆地近くの低地に形成される。しかし、嵐の大洋は既知の衝突構造との関連が見られず、月の最低高度の地点がある南極エイトケン盆地は、緩やかに海に覆われているだけである。 隕石や彗星の衝突は、地球からの潮汐力による小さな圧力変化を除いて、今日月面で起こっている唯一の地質学的力である。月の地層学で用いられる最も重要なクレーターのいくつかは、このように最近できたものである。例えば、深さ3.76km、直径93kmのコペルニクスは、約9億年前に形成されたと考えられている。アポロ17号は、ティコ由来の物質が採取できる地点に着陸した。アポロ17号の探査で得られたサンプルの分析では、ティコは約1億年前に形成されたことが示された。月の表面は、高エネルギーの粒子や太陽風の照射、流星塵の衝突等の宇宙天気の影響も受ける。この過程により、光条が若いクレーターの周囲に形成されたのち、周囲のアルベドと同程度になるまで色が暗くなる。しかし、光条を成す物質の組成が基盤岩の組成と異なっていれば、コントラストにより光条はずっと長い時間観察できることになる。 1990年代に月探査が再開されると、月が冷えたことによって生じた収縮に由来する急斜面が発見された。
※この「地質の歴史」の解説は、「月の地質」の解説の一部です。
「地質の歴史」を含む「月の地質」の記事については、「月の地質」の概要を参照ください。
- 地質の歴史のページへのリンク