前期量子論
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/08/04 21:00 UTC 版)
量子力学が発達する以前にも、その根底にある原理についての深い理解はなされていなかったにせよ、特定の物理量が量子化されるという仮説や、時には粒子と波動の二重性があらわれるということは知られていた。これらの理論は、それぞれに対応する対象を外れると、具体的な予言はできなかった。これら量子力学の先駆けを称して前期量子論と呼ぶことがある。 1900年、マックス・プランクは黒体放射の周波数分布についての観測結果を説明する式を編み出した。このプランクの法則と呼ばれる法則は、黒体上の振動子のエネルギー準位が離散的であることを仮定して導かれたものであった。プランクは、このエネルギーの量子化は物質の性質であって、光そのものの性質ではないと考えていた。このモデルでは、物質が固定されたエネルギー準位しか取ることができないために光は物質と固定のエネルギー量しか交換することができないのであって、光は単に物質の影響を受けているにすぎないとされた。そして、彼はエネルギー量 ΔE と光の周波数 ν の間に ΔE = hν という関係があるということを見いだした。 アルベルト・アインシュタインは1905年、光電効果を説明するためにこれらの概念を拡張し、光そのもののエネルギーの量子化を提唱した。光電効果とは、特定の色の光が金属表面から電子を叩き出すことができるというものである。ここで、光線は常に同じ、周波数に比例する量のエネルギーしか個々の電子に与えることができないものとされ、これは光の性質であるとされた。このため、アインシュタインはエネルギー準位が量子化されているのは物質の内部だけではなく、光そのものも光量子と呼ばれる特定のエネルギー量しか持てないと結論づけた。この概念は、光が純粋に波動的存在であることとは相容れない。従って、光は古典的波でも古典的粒子の流れでもなく、むしろ場合によってそのどちらかの性質を示すものであると考える必要が出てきた。 1913年、ニールス・ボーアは、水素原子のスペクトルを説明するために量子化されたエネルギー準位の概念を用いた。彼の名にちなんでボーアの原子模型と呼ばれるこのモデルでは、水素原子中の電子は特定のエネルギーを持って原子核を周回すると仮定される。ここで、電子は依然として古典的粒子と考えられているが、特定のエネルギーしか持つことができず、そのエネルギーをもって原子核を回る電子は古典電磁力学に反して電磁波を発生させず、エネルギーを失わないという条件が課された。ボーアが用いた仮定の実験的な確認は、1914年のフランク=ヘルツの実験により行われた。特にアーノルド・ゾンマーフェルトにより、水素以外の原子のスペクトルを説明できるよう、ボーアの原子模型は電子が楕円軌道も取れるよう拡張された。しかし、この目標は十分に達成されなかった。また、ボーアは彼の仮定(ドイツ語版)を正当化する理由として、水素原子スペクトル(ドイツ語版)が説明できること以外を挙げられなかった。より深い理解のためには、彼のモデルでは不十分だった。 1924年、 ルイ・ド・ブロイは、全ての物質が波動的性質を示すことがあり、その逆で波も粒子の性質を示すことがあるとする、物質波の理論を発表した。この理論により、光電効果とボーアの原子模型を共通の原因から説明することができた。原子核の周りの電子軌道は定在波と考えられる。この考え方による計算上の電子の波長と、ボーアの原子模型における軌道の周長はよく一致することが確かめられた。しかし、水素以外の原子スペクトルの説明は依然としてできなかった。 ド・ブロイ理論は三年後に二つの独立に行なわれた、電子の回折を検証する実験により確認された。 イギリスの物理学者、ジョージ・パジェット・トムソンは、電子線 に金属薄膜を透過させ、ド・ブロイが予測した干渉縞を観測した。同様の実験は、ベル研究所のクリントン・デイヴィソンとチャールズ・クンスマンにより既に1921年にニッケルによる電子線反射回折を用いて行われていたが、そのころはまだ干渉と解釈されていなかった。デイヴィソンと助手のレスター・H・ジャマー(ドイツ語版)は、1927年に再実験を行い、観測された明瞭な回折パターンをド・ブロイの物質波理論を用い説明した。
※この「前期量子論」の解説は、「量子論」の解説の一部です。
「前期量子論」を含む「量子論」の記事については、「量子論」の概要を参照ください。
前期量子論と同じ種類の言葉
Weblioに収録されているすべての辞書から前期量子論を検索する場合は、下記のリンクをクリックしてください。

- 前期量子論のページへのリンク