光共振器とは? わかりやすく解説

Weblio 辞書 > 同じ種類の言葉 > 工業 > 装置 > 共振器 > 光共振器の意味・解説 

ひかり‐きょうしんき【光共振器】

読み方:ひかりきょうしんき

光の領域周波数をもつ電磁波受け取って共振させる装置レーザー発生させる主要な構成要素一つ一般に二つ反射鏡対面させ、一方鏡面わずかに光を外部透過するものが使われる


光共振器

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/07/05 11:32 UTC 版)

光共振器(ひかりきょうしんき、: optical resonator)とは、対面させたの間にを閉じ込め、光の定常波を作り出すための光学機器をいう。キャビティ(cavity, optical cavity)とも呼ばれる。レーザー光パラメトリック増幅器や、干渉計に用いられる。

概要

光共振器は、レーザーにおいて主要な役割を果たしている。対面させた鏡の間にレーザー媒質を封入し、光を何度も往復させることで光の増幅を行う。 光共振器に閉じ込められた光は、特定の共振周波数の定常波を生じる。生じる定在波のパターンはモードと呼ばれる。縦モード英語版周波数のみが異なる一方、横モード英語版は周波数に加えてビーム断面に沿った強度分布も異なる。

光共振器内に浮遊するガラスナノ粒子

二つの鏡の間の距離とそれぞれの焦点距離によって共振器の種類が区別される(平面鏡は必要な精度で配置することが困難であるため、あまり用いられない)。形状(共振器の種類)はビームを安定に保つ(ビームのサイズが反射されるごとに継続的に大きくならない)よう選択される必要がある。共振器の種類は、ビームウェストが最小となることや共振器内に焦点を持たないこと(そのため光の強度が極端な点を持たないこと)、その他の基準を満たすよう設計される。

光共振器はQ値を大きくする、すなわち光が非常に多数回反射されても減衰が小さくなるよう設計される[1]。したがって、レーザーの周波数スペクトル幅と周波数の絶対値との比は非常に小さくなる。

共振器のモード

様々な曲率の二つの鏡からなる光共振器の種類とその内部の放射強度パターン

共振器内に閉じ込められた光は鏡の間を何回も反射し、干渉の効果により特定のパターンと周波数の光のみが共振器内に維持され、その他は弱めあう干渉により抑制される。一般的に、各往復で放射強度パターンが全く同じになるパターンが最も安定であり、これを固有モード、または共振器の「モード」と呼ぶ。

共振器のモードは次の二つの種類に分けられる。縦モード英語版はそれぞれ周波数が異なり、横モード英語版は周波数と光の放射強度パターンの両方が異なる。共振器の基底横モードはガウシアンビームである。

共振器の種類

光共振器の種類のうちもっとも一般的なものは平面鏡もしくは球面鏡を対向させたものである。このうち最も単純なものは対向する二つの平面鏡から成るもので、ファブリ・ペロー型共振器と呼ばれる。この配置は単純だが、整列させるのが困難なため大規模レーザーで用いられることは稀である。平面鏡は数秒角以内で整列させなければ共振器内のビームが「ウォークオフ」し、結果として共振器の端から漏れてしまう。しかし、この問題は鏡面間の距離が小さい (L < cm) 短い共振器では相当抑えられる。したがって平行平面鏡共振器はマイクロチップやマイクロ共振器レーザー英語版半導体レーザーにおいて一般的に用いられる。このような場合、鏡を別に用いるのではなく反射性の光学薄膜コーティングが直接レーザー媒質に施される。平行平面鏡共振器はファブリ・ペロー干渉計の基礎でもある。

曲率半径がそれぞれ R1 および R2 の二枚の鏡を用いた共振器には、数々の一般的共振器形状が存在する。曲率半径が共振器長の半分と一致する (R1 = R2 = L / 2) 場合、共中心型共振器、または球型共振器と呼ばれる。この種類の共振器は共振器の中心において回折限界ビームウェストを生じ、また鏡の開口の全体を満たす大きなビーム直径を生じる。これに似たものとして半球形共振器、すなわち一つの平面鏡ともう一つの共振器長と等しい曲率半径をもつ鏡からなる共振器がある。

一般的で重要な設計のひとつとして、共焦点共振器、すなわち共振器長と曲率半径が等しい (R1 = R2 = L) 二つの鏡からなるものが挙げられる。この設計は共振器長を保った中で、共振器鏡におけるビーム直径が最小となるため、 横モードパターンの純度が重要なレーザーにおいてよく用いられる。

凹凸共振器は片方の鏡が凸面鏡で曲率半径が負となっている。この設計ではビーム焦点が共振器内に結ばれず、したがって強度が非常に強く、焦点において媒質が損傷してしまうような場合に有用である。

球形共振器

液滴などの透明な誘電体球も、興味深い光共振器を形成する。1986年、 Richard K. Chang らは染料ローダミン6G英語版をドープしたエタノールの微小液滴(半径 20–40 マイクロメートル)によるレーザー発振を実証した。この型の光共振器は球のサイズもしくは屈折率が変化するとき光学共振を起こす。このような共振は形状依存共振英語版と呼ばれる。

安定性

二面鏡共振器の安定性ダイアグラム。青く塗られた部分が安定な形状に対応する。

共振器内のビームが周期的に再収束される安定な共振器を構成するためには、 R1, R2, L の値は制限される。もし 共振器が安定でない場合、ビームサイズは際限無く広がり、やがて共振器を構成する鏡のサイズを超えて失われてしまう。 光線伝播行列解析英語版法などの手法を用いることにより、安定性条件を計算することができる。

オートコリメータを用いた折り返し共振器の配置[3]

光共振器の組立においては、精密な配置が重要である。ビーム出力とビーム品質を最高のものとするためには、光学要素の中心をビーム光路が通過するよう配置する必要がある。

単純共振器は共振器軸に沿ったアラインメントレーザー、すなわちコリメーションが良い可視光レーザーに用いられることが多い。ビーム光路と様々な光学要素からの反射を観察することにより、要素の位置と傾きを調整することができる。

より複雑な共振器の場合は、電子オートコリメータレーザービームプロファイラ英語版などの装置を用いて配置調整することもある。

光学遅延線

光路を折り畳むことにより小さなサイズで長い光路長を実現する多重パス光学遅延線として光共振器を用いることもできる。平面鏡を用いた平行平面共振器によりジグザグ光路を生じさせることができるが、上述の通りこのような設計は足音などの機械的外乱に非常に敏感である。曲面鏡を用いて近共焦点配置にする場合、光路は円形のジグザグ形となる。後者の配置はヘリオット型遅延線と呼ばれる。固定された挿入鏡が一方の曲面鏡の近くの軸から離れた位置に配置し、可動式の取り出し鏡が逆側の曲面鏡の近くのやはり軸からずれた位置に配置される。平面鏡の場合は単一の取り出し鏡に平坦線形ステージが用いられ、ヘリオット型遅延線の場合は二つの鏡に回転ステージが用いられる。

共振器内部におけるビーム回転によりビームの偏光状態が変化する。これを補償するため、線形ステージ上に三枚もしくは二枚の鏡を配置する三次元的二次元回帰反射配置の単一パス遅延線が追加で必要な場合がある。ビーム発散を調整するため、線形ステージの二つ目の台に二つのレンズを載せて用いることもある。二つのレンズはガウシアンビームの仮想終端鏡における平坦波面を生じさせる望遠鏡のように動作する。

出典

  1. ^ Paschotta, Rüdiger. “Q Factor”. Encyclopedia of Laser Physics and Technology. RP Photonics. 2017年4月14日閲覧。
  2. ^ G. P. Karman et al. "Laser optics: Fractal modes in unstable resonators" Nature 402, 138 (1999)
  3. ^ Aharon. "" Metrology System for Inter-Alignment of Lasers, Telescopes, and Mechanical Datum"

参考文献

関連項目


光共振器

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/10/17 10:23 UTC 版)

炭酸ガスレーザー」の記事における「光共振器」の解説

炭酸ガスレーザー基本形式は、低圧混合ガス含んだパイレックスガラス製の放電管(光共振器)の一方の端に反射率99.5%以上の全反射鏡を置き、別の端には反射率35-60%程度の半反射鏡部分反射鏡出力鏡)を置き、光を遮らない放電管内の側面両端放電用の電極備えるというものである。鏡の大きさ対応した円形などの広がり持ち平行でコヒーレント光出力が半反射鏡側から得られるので、その後利用適するようにレンズ凹面鏡集光されたりビーム直径絞られたりする。大出力の光を導くのに光ファイバ用いられることはあまりなく、波長対応した反射鏡用いられる。。光加熱問題低減するため、レーザー出力をより高出力システムに多段結合することもある。鏡は放電管両端に一体として作られる他に、放電管の外に置かれるものがある。 用いられる鏡は銀が蒸着される。窓とレンズゲルマニウムセレン化亜鉛を使う。高出力必要な場合は、金の鏡とセレン化亜鉛の窓とレンズが適当である。ダイヤモンドの窓とレンズを使う場合もある。ダイヤモンド製の窓は極めて高価だが、熱伝導率高く硬いため、産業用高出力レーザーには適している。

※この「光共振器」の解説は、「炭酸ガスレーザー」の解説の一部です。
「光共振器」を含む「炭酸ガスレーザー」の記事については、「炭酸ガスレーザー」の概要を参照ください。

ウィキペディア小見出し辞書の「光共振器」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ



光共振器と同じ種類の言葉


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「光共振器」の関連用語

光共振器のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



光共振器のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
デジタル大辞泉デジタル大辞泉
(C)Shogakukan Inc.
株式会社 小学館
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの光共振器 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaの炭酸ガスレーザー (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。

©2025 GRAS Group, Inc.RSS