実用的共振器
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/10/17 10:16 UTC 版)
光共振器が中空でない(例えばレーザー共振器のように活性媒質で見たされている)場合、L の値としては鏡の間の幾何学的な距離ではなく光路長を用いる必要がある。レンズなどの光学要素が共振器内に存在する場合、安定性とモードサイズが影響を受ける。さらに、ほとんどの活性媒質では熱その他の非均一性によりさまざまなレンズ効果が媒質中に生じるため、レーザー共振器の設計上考慮する必要がある。 実用的レーザー共振器は、「折り返し共振器」を構成するために三つ、四つ、もしくはそれ以上の鏡を用いる構成が一般的である。一般に、一対の曲面鏡により一つ以上の共焦点断面を形成し、平面鏡により共振器の残りを擬似コリメート(英語版)状態とする。レーザービームの形状は共振器の型に依存し、近軸型共振器によるビームはガウシアンビームとして良くモデル化できる。特殊な場合ではビームを、単一横モードにより記述でき、その空間的性質はやはりガウシアンビームにより記述できる。より一般的には、ビームは複数の横モードの重ねあわせにより記述される。そのようなビームは、エルミート多項式もしくはインス多項式(英語版)などの完全直交基底(二次元)関数系により精密に記述することができる。一方、不安定レーザー共振器はフラクタル形状ビームを生じることが示される。 折り畳み部分にあるビームウェストには、なんらかの共振器内要素が設置されることが多い。例えば、共振器減衰用の音響光学変調器(英語版)や横モード制御用の真空空間フィルタ(英語版)などが挙げられる。低出力レーザーの場合、レーザー活性媒質自体がビームウェストに設置される場合もある。大きな擬似コリメートビームには、フィルタやプリズム、回折格子などの追加的要素が必要であることが多い。 これらの設計により、共振器内のブリュースター角要素により生じる共振器内ビームの非点収差を補償することができる。 共振器を'Z'型配置にすることにより、'Δ'型や'X'型の共振器では補償できないコマ収差をも補償できる。 非平面型共振器により、ビームプロファイルを回転させ、安定性を上げることができる。活性媒質中に生じる熱は共振器の周波数ドリフトを引き起こすため、非活性共振器で周波数を能動的に固定することもある。同様に、光ファイバーを用いた空間的フィルタリングにより指向安定性を向上させることができる。
※この「実用的共振器」の解説は、「光共振器」の解説の一部です。
「実用的共振器」を含む「光共振器」の記事については、「光共振器」の概要を参照ください。
- 実用的共振器のページへのリンク