距離の定義
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/09/14 15:05 UTC 版)
リンドラーチャートの研究から得られる多くの教訓の一つに、いくつかの異なる(しかし筋の通った)リンドラー観測者にとっての距離概念がありうるという事実が挙げられる。 二人のリンドラー観測者(紺の縦線)の間の「レーダー距離」の作業的意味。リンドラー地平面は左端の赤い縦線で示されている。レーダーパルスの世界線と共に、世界点 A(中央下), B(右中央), C(中央上) における(適切にスケールした)光円錐も示す。 最初の一つは、ここまでに暗黙に採用されていたもので、空間的超断面 t = t0 上における誘導リーマン計量である。これを、この誘導リーマン計量に対応するという意味で「定規距離」と呼ぼう。しかし、この距離の作業的な意味は直ちに明らかなわけではない。 物理測定の立場からいってより自然な二つの世界線の間の距離概念は、「レーダー距離」である。これはある観測者の世界線上の世界点 A からヌル測地線を小物体に向けて飛ばし、世界点 B で反射して観測者に返し、世界点 C で受けとるのにかかった往復時間を観測者の持つ理想時計で測り、割ることで計算できる。 (ミンコフスキー時空では、幸いにも二つの世界線の間に複数のヌル測地線が存在するという可能性については考えなくてもよい。しかし、これを宇宙論的モデルに適用するのはそう単純にはいかない。この二人の観測者間の距離概念は、観測者の入れ替えに対して対称な概念であることに注意が必要である。) 具体的には、座標 x = x0, y = 0, z = 0 のリンドラー観測者と座標 x = x0 + h , y = 0, z = 0(前者は後続であるから、追随するためにより強い加速度をうけていることに注意。) リンドラー線素において dy = 0, dz = 0 と置くことにより、すぐに加速度方向のヌル測地線の満す方程式を得ることができる。 t − t 0 = log ( x / x 0 ) {\displaystyle t-t_{0}=\log(x/x_{0})} したがって、これら二人の観測者の間のレーダー距離は以下で与えられる。 x 0 log ( 1 + h x 0 ) = h − h 2 2 x 0 + O ( h 3 ) {\displaystyle x_{0}\,\log \left(1+{\frac {h}{x_{0}}}\right)=h-{\frac {h^{2}}{2\,x_{0}}}+O\left(h^{3}\right)} これは定規距離より若干小さいが、近傍の観測者間では違いは無視できる。 三つめの距離概念は次のように説明される。(点ではなく)なんらかの物体の上に置かれた単位円を観測者の場所から見たときの見込み角を計測する。これを「光学直径距離」と呼ぶ。ミンコフスキー時空上におけるヌル測地線の単純な性質から、(加速方向に沿って並んだ)リンドラー観測者間の光学的距離は容易に決定できる。スケッチを書けば、光学直径距離が h + 1 x 0 + O ( h 3 ) {\displaystyle \scriptstyle h\,+\,{\frac {1}{x_{0}}}\,+\,O\left(h^{3}\right)} のようにスケールすることは納得できるだろう。したがって、後続の観測者が先行する観測者までの距離を推定する(h > 0 の)場合、レーダー距離よりも若干長い定規距離よりも光学距離が若干長いことになる。先行する観測者から後続の観測者までの距離は読者に考えて欲しい。 ほかにも距離概念はあるが、要点は明確である。これらの様々な概念による、あるリンドラー観測者間の距離の値は一般的に一致しないが、全ての概念で「リンドラー観測者は一定の距離を保つ」ということは一致するのである。近傍のリンドラー観測者の間が相互に定常であることは、リンドラー合同の膨張テンソルが恒等的にゼロであることの帰結である。しかし、この剛体性はより大きなスケールでも保たれることはここまで見てきた通りである。この剛体性は、相対論的物理学においては(少くとも不均一な応力をかけることなしに)棒を剛体的に加速することはできない(および円板を剛体的に回転させることはできない)というよく知られた事実に対するに、真に特筆すべき性質である。この事実を明らかにする最も簡単な方法は、ニュートン力学では剛体を「蹴った」場合、その全ての物質要素は瞬時に運動状態を変える。これは当然のごとく、光速よりも速く物理的効果のある情報を伝えることはできないとする相対性原理に反している。 この帰結として、棒の長さに沿って各所に外力を加えるときは、棒の異る箇所には異なる大きさの加速度を与えなければ、いつか棒は限界を越えて膨張し最終的には破壊されるということを示すことができる。換言すれば、破壊されずに加速され続ける棒はその長さに沿って変化する応力を感じなければならないということである。さらには、力を時間的に変化させるどんな試行実験でも、「蹴る」にしろ徐々に加速するにしろ、物体の違う部分が外力に対して光速を超えて反応を示すような、相対論とは相容れないモデルを避けなければならないという問題からは避けて通れないということが言える。 定規距離の作業的意味の問題に戻ると、観測者間で非常にゆっくりと小さな定規を片方の端からもう片方の端まで繰り返し手渡していった場合に得られる距離に他ならないことがわかる。しかし、この理解を詳細にわたって正当化するためには、なんらかの物性モデルについての考察が必要となる。
※この「距離の定義」の解説は、「リンドラー座標」の解説の一部です。
「距離の定義」を含む「リンドラー座標」の記事については、「リンドラー座標」の概要を参照ください。
- 距離の定義のページへのリンク