現在までに知られている最良の結果とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > ウィキペディア小見出し辞書 > 現在までに知られている最良の結果の意味・解説 

現在までに知られている最良の結果

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2019/01/06 15:38 UTC 版)

トムソン問題」の記事における「現在までに知られている最良の結果」の解説

下記の表で、 N {\displaystyle N} は点(電荷)の個数E 1 {\displaystyle E_{1}} はエネルギー対称性記述シェーンフリース記号三次元の点群参照)によるもの、また r i {\displaystyle r_{i}} は点電荷位置を表す。ほとんどの対称性タイプにおいてベクトル総和ゼロになり、従って電気双極子モーメントゼロになる。 点集合凸包による多面体併せて考えることが慣習となっている。ここで、 v i {\displaystyle v_{i}} は添字等しい辺が集まる頂点の数、 e {\displaystyle e} は辺の数、 f 3 {\displaystyle f_{3}} は三角形の面の数、 f 4 {\displaystyle f_{4}} は四角形の面の数、 θ 1 {\displaystyle \theta _{1}} は隣接する2辺が成す角の最小値である。辺の長さ一定とは限らないことに注意このためN =4, 6, 12, 24除いて凸包は表の最終列に記した一様多面体またはジョンソンの立体とはグラフ同型であるにとどまる。 N E 1 {\displaystyle E_{1}} 対称性 | ∑ r i | {\displaystyle \left|\sum \mathbf {r} _{i}\right|} v 3 {\displaystyle v_{3}} v 4 {\displaystyle v_{4}} v 5 {\displaystyle v_{5}} v 6 {\displaystyle v_{6}} v 7 {\displaystyle v_{7}} v 8 {\displaystyle v_{8}} e {\displaystyle e} f 3 {\displaystyle f_{3}} f 4 {\displaystyle f_{4}} θ 1 {\displaystyle \theta _{1}} 対応する多面体2 0.500000000 D ∞ h {\displaystyle D_{\infty h}} 0 – – – – – – 1 – – 180.000° 二角形 3 1.732050808 D 3 h {\displaystyle D_{3h}} 0 – – – – – – 3 1 – 120.000° 三角形 4 3.674234614 T d {\displaystyle T_{d}} 0 4 0 0 0 0 0 6 4 0 109.471° 四面体 5 6.474691495 D 3 h {\displaystyle D_{3h}} 0 2 3 0 0 0 0 9 6 0 90.000° 双三角錐 6 9.985281374 O h {\displaystyle O_{h}} 0 0 6 0 0 0 0 12 8 0 90.000° 八面体 7 14.452977414 D 5 h {\displaystyle D_{5h}} 0 0 5 2 0 0 0 15 10 0 72.000° 双五角錐 8 19.675287861 D 4 d {\displaystyle D_{4d}} 0 0 8 0 0 0 0 16 8 2 71.694° 反四角柱形(英語版) 9 25.759986531 D 3 h {\displaystyle D_{3h}} 0 0 3 6 0 0 0 21 14 0 69.190° 三側錐三角柱 10 32.716949460 D 4 d {\displaystyle D_{4d}} 0 0 2 8 0 0 0 24 16 0 64.996° 双四角錐反柱 11 40.596450510 C 2 v {\displaystyle C_{2v}} 0.013219635 0 2 8 1 0 0 27 18 0 58.540° edge-contracted icosahedron英語版12 49.165253058 I h {\displaystyle I_{h}} 0 0 0 12 0 0 0 30 20 0 63.435° 正二十面体 13 58.853230612 C 2 v {\displaystyle C_{2v}} 0.008820367 0 1 10 2 0 0 33 22 0 52.317° 14 69.306363297 D 6 d {\displaystyle D_{6d}} 0 0 0 12 2 0 0 36 24 0 52.866° gyroelongated hexagonal dipyramid 15 80.670244114 D 3 {\displaystyle D_{3}} 0 0 0 12 3 0 0 39 26 0 49.225° 16 92.911655302 T {\displaystyle T} 0 0 0 12 4 0 0 42 28 0 48.936° 17 106.050404829 D 5 h {\displaystyle D_{5h}} 0 0 0 12 5 0 0 45 30 0 50.108° 18 120.084467447 D 4 d {\displaystyle D_{4d}} 0 0 2 8 8 0 0 48 32 0 47.534° 19 135.089467557 C 2 v {\displaystyle C_{2v}} 0.000135163 0 0 14 5 0 0 50 32 1 44.910° 20 150.881568334 D 3 h {\displaystyle D_{3h}} 0 0 0 12 8 0 0 54 36 0 46.093° 21 167.641622399 C 2 v {\displaystyle C_{2v}} 0.001406124 0 1 10 10 0 0 57 38 0 44.321° 22 185.287536149 T d {\displaystyle T_{d}} 0 0 0 12 10 0 0 60 40 0 43.302° 23 203.930190663 D 3 {\displaystyle D_{3}} 0 0 0 12 11 0 0 63 42 0 41.481° 24 223.347074052 O {\displaystyle O} 0 0 0 24 0 0 0 60 32 6 42.065° 変形立方体 25 243.812760299 C s {\displaystyle C_{s}} 0.001021305 0 0 14 11 0 0 68 44 1 39.610° 26 265.133326317 C 2 {\displaystyle C_{2}} 0.001919065 0 0 12 14 0 0 72 48 0 38.842° 27 287.302615033 D 5 h {\displaystyle D_{5h}} 0 0 0 12 15 0 0 75 50 0 39.940° 28 310.491542358 T {\displaystyle T} 0 0 0 12 16 0 0 78 52 0 37.824° 29 334.634439920 D 3 {\displaystyle D_{3}} 0 0 0 12 17 0 0 81 54 0 36.391° 30 359.603945904 D 2 {\displaystyle D_{2}} 0 0 0 12 18 0 0 84 56 0 36.942° 31 385.530838063 C 3 v {\displaystyle C_{3v}} 0.003204712 0 0 12 19 0 0 87 58 0 36.373° 32 412.261274651 I h {\displaystyle I_{h}} 0 0 0 12 20 0 0 90 60 0 37.377° 33 440.204057448 C s {\displaystyle C_{s}} 0.004356481 0 0 15 17 1 0 92 60 1 33.700° 34 468.904853281 D 2 {\displaystyle D_{2}} 0 0 0 12 22 0 0 96 64 0 33.273° 35 498.569872491 C 2 {\displaystyle C_{2}} 0.000419208 0 0 12 23 0 0 99 66 0 33.100° 36 529.122408375 D 2 {\displaystyle D_{2}} 0 0 0 12 24 0 0 102 68 0 33.229° 37 560.618887731 D 5 h {\displaystyle D_{5h}} 0 0 0 12 25 0 0 105 70 0 32.332° 38 593.038503566 D 6 d {\displaystyle D_{6d}} 0 0 0 12 26 0 0 108 72 0 33.236° 39 626.389009017 D 3 h {\displaystyle D_{3h}} 0 0 0 12 27 0 0 111 74 0 32.053° 40 660.675278835 T d {\displaystyle T_{d}} 0 0 0 12 28 0 0 114 76 0 31.916° 41 695.916744342 D 3 h {\displaystyle D_{3h}} 0 0 0 12 29 0 0 117 78 0 31.528° 42 732.078107544 D 5 h {\displaystyle D_{5h}} 0 0 0 12 30 0 0 120 80 0 31.245° 43 769.190846459 C 2 v {\displaystyle C_{2v}} 0.000399668 0 0 12 31 0 0 123 82 0 30.867° 44 807.174263085 O h {\displaystyle O_{h}} 0 0 0 24 20 0 0 120 72 6 31.258° 45 846.188401061 D 3 {\displaystyle D_{3}} 0 0 0 12 33 0 0 129 86 0 30.207° 46 886.167113639 T {\displaystyle T} 0 0 0 12 34 0 0 132 88 0 29.790° 47 927.059270680 C s {\displaystyle C_{s}} 0.002482914 0 0 14 33 0 0 134 88 1 28.787° 48 968.713455344 O {\displaystyle O} 0 0 0 24 24 0 0 132 80 6 29.690° 49 1011.557182654 C 3 {\displaystyle C_{3}} 0.001529341 0 0 12 37 0 0 141 94 0 28.387° 50 1055.182314726 D 6 d {\displaystyle D_{6d}} 0 0 0 12 38 0 0 144 96 0 29.231° 51 1099.819290319 D 3 {\displaystyle D_{3}} 0 0 0 12 39 0 0 147 98 0 28.165° 52 1145.418964319 C 3 {\displaystyle C_{3}} 0.000457327 0 0 12 40 0 0 150 100 0 27.670° 53 1191.922290416 C 2 v {\displaystyle C_{2v}} 0.000278469 0 0 18 35 0 0 150 96 3 27.137° 54 1239.361474729 C 2 {\displaystyle C_{2}} 0.000137870 0 0 12 42 0 0 156 104 0 27.030° 55 1287.772720783 C 2 {\displaystyle C_{2}} 0.000391696 0 0 12 43 0 0 159 106 0 26.615° 56 1337.094945276 D 2 {\displaystyle D_{2}} 0 0 0 12 44 0 0 162 108 0 26.683° 57 1387.383229253 D 3 {\displaystyle D_{3}} 0 0 0 12 45 0 0 165 110 0 26.702° 58 1438.618250640 D 2 {\displaystyle D_{2}} 0 0 0 12 46 0 0 168 112 0 26.155° 59 1490.773335279 C 2 {\displaystyle C_{2}} 0.000154286 0 0 14 43 2 0 171 114 0 26.170° 60 1543.830400976 D 3 {\displaystyle D_{3}} 0 0 0 12 48 0 0 174 116 0 25.958° 61 1597.941830199 C 1 {\displaystyle C_{1}} 0.001091717 0 0 12 49 0 0 177 118 0 25.392° 62 1652.909409898 D 5 {\displaystyle D_{5}} 0 0 0 12 50 0 0 180 120 0 25.880° 63 1708.879681503 D 3 {\displaystyle D_{3}} 0 0 0 12 51 0 0 183 122 0 25.257° 64 1765.802577927 D 2 {\displaystyle D_{2}} 0 0 0 12 52 0 0 186 124 0 24.920° 65 1823.667960264 C 2 {\displaystyle C_{2}} 0.000399515 0 0 12 53 0 0 189 126 0 24.527° 66 1882.441525304 C 2 {\displaystyle C_{2}} 0.000776245 0 0 12 54 0 0 192 128 0 24.765° 67 1942.122700406 D 5 {\displaystyle D_{5}} 0 0 0 12 55 0 0 195 130 0 24.727° 68 2002.874701749 D 2 {\displaystyle D_{2}} 0 0 0 12 56 0 0 198 132 0 24.433° 69 2064.533483235 D 3 {\displaystyle D_{3}} 0 0 0 12 57 0 0 201 134 0 24.137° 70 2127.100901551 D 2 d {\displaystyle D_{2d}} 0 0 0 12 50 0 0 200 128 4 24.291° 71 2190.649906425 C 2 {\displaystyle C_{2}} 0.001256769 0 0 14 55 2 0 207 138 0 23.803° 72 2255.001190975 I {\displaystyle I} 0 0 0 12 60 0 0 210 140 0 24.492° 73 2320.633883745 C 2 {\displaystyle C_{2}} 0.001572959 0 0 12 61 0 0 213 142 0 22.810° 74 2387.072981838 C 2 {\displaystyle C_{2}} 0.000641539 0 0 12 62 0 0 216 144 0 22.966° 75 2454.369689040 D 3 {\displaystyle D_{3}} 0 0 0 12 63 0 0 219 146 0 22.736° 76 2522.674871841 C 2 {\displaystyle C_{2}} 0.000943474 0 0 12 64 0 0 222 148 0 22.886° 77 2591.850152354 D 5 {\displaystyle D_{5}} 0 0 0 12 65 0 0 225 150 0 23.286° 78 2662.046474566 T h {\displaystyle T_{h}} 0 0 0 12 66 0 0 228 152 0 23.426° 79 2733.248357479 C s {\displaystyle C_{s}} 0.000702921 0 0 12 63 1 0 230 152 1 22.636° 80 2805.355875981 D 4 d {\displaystyle D_{4d}} 0 0 0 16 64 0 0 232 152 2 22.778° 81 2878.522829664 C 2 {\displaystyle C_{2}} 0.000194289 0 0 12 69 0 0 237 158 0 21.892° 82 2952.569675286 D 2 {\displaystyle D_{2}} 0 0 0 12 70 0 0 240 160 0 22.206° 83 3027.528488921 C 2 {\displaystyle C_{2}} 0.000339815 0 0 14 67 2 0 243 162 0 21.646° 84 3103.465124431 C 2 {\displaystyle C_{2}} 0.000401973 0 0 12 72 0 0 246 164 0 21.513° 85 3180.361442939 C 2 {\displaystyle C_{2}} 0.000416581 0 0 12 73 0 0 249 166 0 21.498° 86 3258.211605713 C 2 {\displaystyle C_{2}} 0.001378932 0 0 12 74 0 0 252 168 0 21.522° 87 3337.000750014 C 2 {\displaystyle C_{2}} 0.000754863 0 0 12 75 0 0 255 170 0 21.456° 88 3416.720196758 D 2 {\displaystyle D_{2}} 0 0 0 12 76 0 0 258 172 0 21.486° 89 3497.439018625 C 2 {\displaystyle C_{2}} 0.000070891 0 0 12 77 0 0 261 174 0 21.182° 90 3579.091222723 D 3 {\displaystyle D_{3}} 0 0 0 12 78 0 0 264 176 0 21.230° 91 3661.713699320 C 2 {\displaystyle C_{2}} 0.000033221 0 0 12 79 0 0 267 178 0 21.105° 92 3745.291636241 D 2 {\displaystyle D_{2}} 0 0 0 12 80 0 0 270 180 0 21.026° 93 3829.844338421 C 2 {\displaystyle C_{2}} 0.000213246 0 0 12 81 0 0 273 182 0 20.751° 94 3915.309269620 D 2 {\displaystyle D_{2}} 0 0 0 12 82 0 0 276 184 0 20.952° 95 4001.771675565 C 2 {\displaystyle C_{2}} 0.000116638 0 0 12 83 0 0 279 186 0 20.711° 96 4089.154010060 C 2 {\displaystyle C_{2}} 0.000036310 0 0 12 84 0 0 282 188 0 20.687° 97 4177.533599622 C 2 {\displaystyle C_{2}} 0.000096437 0 0 12 85 0 0 285 190 0 20.450° 98 4266.822464156 C 2 {\displaystyle C_{2}} 0.000112916 0 0 12 86 0 0 288 192 0 20.422° 99 4357.139163132 C 2 {\displaystyle C_{2}} 0.000156508 0 0 12 87 0 0 291 194 0 20.284° 100 4448.350634331 T {\displaystyle T} 0 0 0 12 88 0 0 294 196 0 20.297° 101 4540.590051694 D 3 {\displaystyle D_{3}} 0 0 0 12 89 0 0 297 198 0 20.011° 102 4633.736565899 D 3 {\displaystyle D_{3}} 0 0 0 12 90 0 0 300 200 0 20.040° 103 4727.836616833 C 2 {\displaystyle C_{2}} 0.000201245 0 0 12 91 0 0 303 202 0 19.907° 104 4822.876522746 D 6 {\displaystyle D_{6}} 0 0 0 12 92 0 0 306 204 0 19.957° 105 4919.000637616 D 3 {\displaystyle D_{3}} 0 0 0 12 93 0 0 309 206 0 19.842° 106 5015.984595705 D 2 {\displaystyle D_{2}} 0 0 0 12 94 0 0 312 208 0 19.658° 107 5113.953547724 C 2 {\displaystyle C_{2}} 0.000064137 0 0 12 95 0 0 315 210 0 19.327° 108 5212.813507831 C 2 {\displaystyle C_{2}} 0.000432525 0 0 12 96 0 0 318 212 0 19.327° 109 5312.735079920 C 2 {\displaystyle C_{2}} 0.000647299 0 0 14 93 2 0 321 214 0 19.103° 110 5413.549294192 D 6 {\displaystyle D_{6}} 0 0 0 12 98 0 0 324 216 0 19.476° 111 5515.293214587 D 3 {\displaystyle D_{3}} 0 0 0 12 99 0 0 327 218 0 19.255° 112 5618.044882327 D 5 {\displaystyle D_{5}} 0 0 0 12 100 0 0 330 220 0 19.351° 113 5721.824978027 D 3 {\displaystyle D_{3}} 0 0 0 12 101 0 0 333 222 0 18.978° 114 5826.521572163 C 2 {\displaystyle C_{2}} 0.000149772 0 0 12 102 0 0 336 224 0 18.836° 115 5932.181285777 C 3 {\displaystyle C_{3}} 0.000049972 0 0 12 103 0 0 339 226 0 18.458° 116 6038.815593579 C 2 {\displaystyle C_{2}} 0.000259726 0 0 12 104 0 0 342 228 0 18.386° 117 6146.342446579 C 2 {\displaystyle C_{2}} 0.000127609 0 0 12 105 0 0 345 230 0 18.566° 118 6254.877027790 C 2 {\displaystyle C_{2}} 0.000332475 0 0 12 106 0 0 348 232 0 18.455° 119 6364.347317479 C 2 {\displaystyle C_{2}} 0.000685590 0 0 12 107 0 0 351 234 0 18.336° 120 6474.756324980 C s {\displaystyle C_{s}} 0.001373062 0 0 12 108 0 0 354 236 0 18.418° 121 6586.121949584 C 3 {\displaystyle C_{3}} 0.000838863 0 0 12 109 0 0 357 238 0 18.199° 122 6698.374499261 I h {\displaystyle I_{h}} 0 0 0 12 110 0 0 360 240 0 18.612° 123 6811.827228174 C 2 v {\displaystyle C_{2v}} 0.001939754 0 0 14 107 2 0 363 242 0 17.840° 124 6926.169974193 D 2 {\displaystyle D_{2}} 0 0 0 12 112 0 0 366 244 0 18.111° 125 7041.473264023 C 2 {\displaystyle C_{2}} 0.000088274 0 0 12 113 0 0 369 246 0 17.867° 126 7157.669224867 D 4 {\displaystyle D_{4}} 0 0 2 16 100 8 0 372 248 0 17.920° 127 7274.819504675 D 5 {\displaystyle D_{5}} 0 0 0 12 115 0 0 375 250 0 17.877° 128 7393.007443068 C 2 {\displaystyle C_{2}} 0.000054132 0 0 12 116 0 0 378 252 0 17.814° 129 7512.107319268 C 2 {\displaystyle C_{2}} 0.000030099 0 0 12 117 0 0 381 254 0 17.743° 130 7632.167378912 C 2 {\displaystyle C_{2}} 0.000025622 0 0 12 118 0 0 384 256 0 17.683° 131 7753.205166941 C 2 {\displaystyle C_{2}} 0.000305133 0 0 12 119 0 0 387 258 0 17.511° 132 7875.045342797 I {\displaystyle I} 0 0 0 12 120 0 0 390 260 0 17.958° 133 7998.179212898 C 3 {\displaystyle C_{3}} 0.000591438 0 0 12 121 0 0 393 262 0 17.133° 134 8122.089721194 C 2 {\displaystyle C_{2}} 0.000470268 0 0 12 122 0 0 396 264 0 17.214° 135 8246.909486992 D 3 {\displaystyle D_{3}} 0 0 0 12 123 0 0 399 266 0 17.431° 136 8372.743302539 T {\displaystyle T} 0 0 0 12 124 0 0 402 268 0 17.485° 137 8499.534494782 D 5 {\displaystyle D_{5}} 0 0 0 12 125 0 0 405 270 0 17.560° 138 8627.406389880 C 2 {\displaystyle C_{2}} 0.000473576 0 0 12 126 0 0 408 272 0 16.924° 139 8756.227056057 C 2 {\displaystyle C_{2}} 0.000404228 0 0 12 127 0 0 411 274 0 16.673° 140 8885.980609041 C 1 {\displaystyle C_{1}} 0.000630351 0 0 13 126 1 0 414 276 0 16.773° 141 9016.615349190 C 2 v {\displaystyle C_{2v}} 0.000376365 0 0 14 126 0 1 417 278 0 16.962° 142 9148.271579993 C 2 {\displaystyle C_{2}} 0.000550138 0 0 12 130 0 0 420 280 0 16.840° 143 9280.839851192 C 2 {\displaystyle C_{2}} 0.000255449 0 0 12 131 0 0 423 282 0 16.782° 144 9414.371794460 D 2 {\displaystyle D_{2}} 0 0 0 12 132 0 0 426 284 0 16.953° 145 9548.928837232 C s {\displaystyle C_{s}} 0.000094938 0 0 12 133 0 0 429 286 0 16.841° 146 9684.381825575 D 2 {\displaystyle D_{2}} 0 0 0 12 134 0 0 432 288 0 16.905° 147 9820.932378373 C 2 {\displaystyle C_{2}} 0.000636651 0 0 12 135 0 0 435 290 0 16.458° 148 9958.406004270 C 2 {\displaystyle C_{2}} 0.000203701 0 0 12 136 0 0 438 292 0 16.627° 149 10096.859907397 C 1 {\displaystyle C_{1}} 0.000638186 0 0 14 133 2 0 441 294 0 16.344° 150 10236.196436701 T {\displaystyle T} 0 0 0 12 138 0 0 444 296 0 16.405° 151 10376.571469275 C 2 {\displaystyle C_{2}} 0.000153836 0 0 12 139 0 0 447 298 0 16.163° 152 10517.867592878 D 2 {\displaystyle D_{2}} 0 0 0 12 140 0 0 450 300 0 16.117° 153 10660.082748237 D 3 {\displaystyle D_{3}} 0 0 0 12 141 0 0 453 302 0 16.390° 154 10803.372421141 C 2 {\displaystyle C_{2}} 0.000735800 0 0 12 142 0 0 456 304 0 16.078° 155 10947.574692279 C 2 {\displaystyle C_{2}} 0.000603670 0 0 12 143 0 0 459 306 0 15.990° 156 11092.798311456 C 2 {\displaystyle C_{2}} 0.000508534 0 0 12 144 0 0 462 308 0 15.822° 157 11238.903041156 C 2 {\displaystyle C_{2}} 0.000357679 0 0 12 145 0 0 465 310 0 15.948° 158 11385.990186197 C 2 {\displaystyle C_{2}} 0.000921918 0 0 12 146 0 0 468 312 0 15.987° 159 11534.023960956 C 2 {\displaystyle C_{2}} 0.000381457 0 0 12 147 0 0 471 314 0 15.960° 160 11683.054805549 D 2 {\displaystyle D_{2}} 0 0 0 12 148 0 0 474 316 0 15.961° 161 11833.084739465 C 2 {\displaystyle C_{2}} 0.000056447 0 0 12 149 0 0 477 318 0 15.810° 162 11984.050335814 D 3 {\displaystyle D_{3}} 0 0 0 12 150 0 0 480 320 0 15.813° 163 12136.013053220 C 2 {\displaystyle C_{2}} 0.000120798 0 0 12 151 0 0 483 322 0 15.675° 164 12288.930105320 D 2 {\displaystyle D_{2}} 0 0 0 12 152 0 0 486 324 0 15.655° 165 12442.804451373 C 2 {\displaystyle C_{2}} 0.000091119 0 0 12 153 0 0 489 326 0 15.651° 166 12597.649071323 D 2 d {\displaystyle D_{2d}} 0 0 0 16 146 4 0 492 328 0 15.607° 167 12753.469429750 C 2 {\displaystyle C_{2}} 0.000097382 0 0 12 155 0 0 495 330 0 15.600° 168 12910.212672268 D 3 {\displaystyle D_{3}} 0 0 0 12 156 0 0 498 332 0 15.655° 169 13068.006451127 C s {\displaystyle C_{s}} 0.000068102 0 0 13 155 1 0 501 334 0 15.537° 170 13226.681078541 D 2 d {\displaystyle D_{2d}} 0 0 0 12 158 0 0 504 336 0 15.569° 171 13386.355930717 D 3 {\displaystyle D_{3}} 0 0 0 12 159 0 0 507 338 0 15.497° 172 13547.018108787 C 2 v {\displaystyle C_{2v}} 0.000547291 0 0 14 156 2 0 510 340 0 15.292° 173 13708.635243034 C s {\displaystyle C_{s}} 0.000286544 0 0 12 161 0 0 513 342 0 15.225° 174 13871.187092292 D 2 {\displaystyle D_{2}} 0 0 0 12 162 0 0 516 344 0 15.366° 175 14034.781306929 C 2 {\displaystyle C_{2}} 0.000026686 0 0 12 163 0 0 519 346 0 15.252° 176 14199.354775632 C 1 {\displaystyle C_{1}} 0.000283978 0 0 12 164 0 0 522 348 0 15.101° 177 14364.837545298 D 5 {\displaystyle D_{5}} 0 0 0 12 165 0 0 525 350 0 15.269° 178 14531.309552587 D 2 {\displaystyle D_{2}} 0 0 0 12 166 0 0 528 352 0 15.145° 179 14698.754594220 C 1 {\displaystyle C_{1}} 0.000125113 0 0 13 165 1 0 531 354 0 14.968° 180 14867.099927525 D 2 {\displaystyle D_{2}} 0 0 0 12 168 0 0 534 356 0 15.067° 181 15036.467239769 C 2 {\displaystyle C_{2}} 0.000304193 0 0 12 169 0 0 537 358 0 15.002° 182 15206.730610906 D 5 {\displaystyle D_{5}} 0 0 0 12 170 0 0 540 360 0 15.155° 183 15378.166571028 C 1 {\displaystyle C_{1}} 0.000467899 0 0 12 171 0 0 543 362 0 14.747° 184 15550.421450311 T {\displaystyle T} 0 0 0 12 172 0 0 546 364 0 14.932° 185 15723.720074072 C 2 {\displaystyle C_{2}} 0.000389762 0 0 12 173 0 0 549 366 0 14.775° 186 15897.897437048 C 1 {\displaystyle C_{1}} 0.000389762 0 0 12 174 0 0 552 368 0 14.739° 187 16072.975186320 D 5 {\displaystyle D_{5}} 0 0 0 12 175 0 0 555 370 0 14.848° 188 16249.222678879 D 2 {\displaystyle D_{2}} 0 0 0 12 176 0 0 558 372 0 14.740° 189 16426.371938862 C 2 {\displaystyle C_{2}} 0.000020732 0 0 12 177 0 0 561 374 0 14.671° 190 16604.428338501 C 3 {\displaystyle C_{3}} 0.000586804 0 0 12 178 0 0 564 376 0 14.501° 191 16783.452219362 C 1 {\displaystyle C_{1}} 0.001129202 0 0 13 177 1 0 567 378 0 14.195° 192 16963.338386460 I {\displaystyle I} 0 0 0 12 180 0 0 570 380 0 14.819° 193 17144.564740880 C 2 {\displaystyle C_{2}} 0.000985192 0 0 12 181 0 0 573 382 0 14.144° 194 17326.616136471 C 1 {\displaystyle C_{1}} 0.000322358 0 0 12 182 0 0 576 384 0 14.350° 195 17509.489303930 D 3 {\displaystyle D_{3}} 0 0 0 12 183 0 0 579 386 0 14.375° 196 17693.460548082 C 2 {\displaystyle C_{2}} 0.000315907 0 0 12 184 0 0 582 388 0 14.251° 197 17878.340162571 D 5 {\displaystyle D_{5}} 0 0 0 12 185 0 0 585 390 0 14.147° 198 18064.262177195 C 2 {\displaystyle C_{2}} 0.000011149 0 0 12 186 0 0 588 392 0 14.237° 199 18251.082495640 C 1 {\displaystyle C_{1}} 0.000534779 0 0 12 187 0 0 591 394 0 14.153° 200 18438.842717530 D 2 {\displaystyle D_{2}} 0 0 0 12 188 0 0 594 396 0 14.222° 201 18627.591226244 C 1 {\displaystyle C_{1}} 0.001048859 0 0 13 187 1 0 597 398 0 13.830° 202 18817.204718262 D 5 {\displaystyle D_{5}} 0 0 0 12 190 0 0 600 400 0 14.189° 203 19007.981204580 C s {\displaystyle C_{s}} 0.000600343 0 0 12 191 0 0 603 402 0 13.977° 204 19199.540775603 T h {\displaystyle T_{h}} 0 0 0 12 192 0 0 606 404 0 14.291° 212 20768.053085964 I {\displaystyle I} 0 0 0 12 200 0 0 630 420 0 14.118° 214 21169.910410375 T {\displaystyle T} 0 0 0 12 202 0 0 636 424 0 13.771° 216 21575.596377869 D 3 {\displaystyle D_{3}} 0 0 0 12 204 0 0 642 428 0 13.735° 217 21779.856080418 D 5 {\displaystyle D_{5}} 0 0 0 12 205 0 0 645 430 0 13.902° 232 24961.252318934 T {\displaystyle T} 0 0 0 12 220 0 0 690 460 0 13.260° 255 30264.424251281 D 3 {\displaystyle D_{3}} 0 0 0 12 243 0 0 759 506 0 12.565° 256 30506.687515847 T {\displaystyle T} 0 0 0 12 244 0 0 762 508 0 12.572° 257 30749.941417346 D 5 {\displaystyle D_{5}} 0 0 0 12 245 0 0 765 510 0 12.672° 272 34515.193292681 I h {\displaystyle I_{h}} 0 0 0 12 260 0 0 810 540 0 12.335° 282 37147.294418462 I {\displaystyle I} 0 0 0 12 270 0 0 840 560 0 12.166° 292 39877.008012909 D 5 {\displaystyle D_{5}} 0 0 0 12 280 0 0 870 580 0 11.857° 306 43862.569780797 T h {\displaystyle T_{h}} 0 0 0 12 294 0 0 912 608 0 11.628° 312 45629.313804002 C 2 {\displaystyle C_{2}} 0.000306163 0 0 12 300 0 0 930 620 0 11.299° 315 46525.825643432 D 3 {\displaystyle D_{3}} 0 0 0 12 303 0 0 939 626 0 11.337° 317 47128.310344520 D 5 {\displaystyle D_{5}} 0 0 0 12 305 0 0 945 630 0 11.423° 318 47431.056020043 D 3 {\displaystyle D_{3}} 0 0 0 12 306 0 0 948 632 0 11.219° 334 52407.728127822 T {\displaystyle T} 0 0 0 12 322 0 0 996 664 0 11.058° 348 56967.472454334 T h {\displaystyle T_{h}} 0 0 0 12 336 0 0 1038 692 0 10.721° 357 59999.922939598 D 5 {\displaystyle D_{5}} 0 0 0 12 345 0 0 1065 710 0 10.728° 358 60341.830924588 T {\displaystyle T} 0 0 0 12 346 0 0 1068 712 0 10.647° 372 65230.027122557 I {\displaystyle I} 0 0 0 12 360 0 0 1110 740 0 10.531° 382 68839.426839215 D 5 {\displaystyle D_{5}} 0 0 0 12 370 0 0 1140 760 0 10.379° 390 71797.035335953 T h {\displaystyle T_{h}} 0 0 0 12 378 0 0 1164 776 0 10.222° 392 72546.258370889 I {\displaystyle I} 0 0 0 12 380 0 0 1170 780 0 10.278° 400 75582.448512213 T {\displaystyle T} 0 0 0 12 388 0 0 1194 796 0 10.068° 402 76351.192432673 D 5 {\displaystyle D_{5}} 0 0 0 12 390 0 0 1200 800 0 10.099° 432 88353.709681956 D 3 {\displaystyle D_{3}} 0 0 0 24 396 12 0 1290 860 0 9.556° 448 95115.546986209 T {\displaystyle T} 0 0 0 24 412 12 0 1338 892 0 9.322° 460 100351.763108673 T {\displaystyle T} 0 0 0 24 424 12 0 1374 916 0 9.297° 468 103920.871715127 S 6 {\displaystyle S_{6}} 0 0 0 24 432 12 0 1398 932 0 9.120° 470 104822.886324279 S 6 {\displaystyle S_{6}} 0 0 0 24 434 12 0 1404 936 0 9.059°

※この「現在までに知られている最良の結果」の解説は、「トムソン問題」の解説の一部です。
「現在までに知られている最良の結果」を含む「トムソン問題」の記事については、「トムソン問題」の概要を参照ください。

ウィキペディア小見出し辞書の「現在までに知られている最良の結果」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ



英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「現在までに知られている最良の結果」の関連用語

現在までに知られている最良の結果のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



現在までに知られている最良の結果のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaのトムソン問題 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。

©2025 GRAS Group, Inc.RSS