遺伝子組み換え作物 論争

遺伝子組み換え作物

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/05/12 02:58 UTC 版)

論争

遺伝子組換え作物(GM作物)については、強く推進する者[注釈 75]がいる一方、健康や環境に悪影響があるのではと不安を抱く者も多く、イギリスなどの一部の国では、商業目的でのGM作物栽培が行われていない。GM作物を否定する者と肯定する者の間で、その影響について論争が起きている。

生態系などへの影響

概説

遺伝子組換え作物の生態系への影響を含めた評価をする上で重要なことは、何と比較するのかということを明確にすることである。細胞融合や種間交雑、変異体育種、古典的交配を含めた従来の手法によって育種された品種や、慣行農法(慣行栽培)や有機栽培自然農法との比較を行い、様々な観点からの評価を遺伝子組換え作物に対して総合的に行う必要がある。日本においてはセイヨウアブラナであるカノーラのこぼれ種の発芽や他のアブラナ属植物との交雑、ダイズに関しては自生している野生種(原種)であるツルマメとの交雑の可能性が指摘され、様々な調査がなされている。なお、日本には、トウモロコシと交雑可能な野生植物は存在しないため、組換えトウモロコシを日本で栽培した場合、組換えトウモロコシによる野生種への遺伝子汚染の問題はない。そこで、カノーラとダイズの交雑問題について記述した。

外来遺伝子による遺伝子汚染とその防除法

本来、組換え作物が持っていて野生植物が持っていない形質が、組換え作物の花粉の飛散等によって近縁の植物との間で交雑して、拡散してしまう可能性がある(遺伝子汚染)。そのため、組換え作物においても生態系への影響として、組換え品種と在来種や野生種との交雑の危険性があげられることがある。ただし、在来種や野生種との交雑に関しては、組換え品種のみではなく伝統的手法で育種された品種でも同様の問題を含んでおり、組換え品種にのみ限定された問題ではない。

組換え作物と在来種や野生種との交雑を防ぐ手法の一つとして、花粉を作らない雄性不稔の形質が求められている。その他の解決法として、葉緑体などのプラスチド(plastid)やミトコンドリアゲノムは基本的に母系遺伝のため、花粉を通して拡散しないという性質を利用することもある。すべての植物の形質転換に利用できるわけではないが、プラスチドのDNAに目的の外来DNAを相同組換えによって導入してプラスチド内で発現させる訳である。これをプラスチド形質転換という。このようなプラスチド形質転換植物の外来DNAは形質転換植物自身に結実した種子を通してのみ後代に伝達されるため、花粉を介した遺伝子拡散を回避できる。その他、自家受粉するイネダイズなどの作物においては、閉花受粉性を利用する試みが進んでいる。閉花受粉性とは、開花せずに同一の花の雄蕊花粉によって雌蕊が受粉する性質である。この性質を利用できれば、花粉を介した遺伝子拡散の可能性を低減できる。現在では利用されてはいないが、いわゆる「ターミネーター技術」を利用すれば遺伝子拡散を防ぐことができる。その他にも種子や花粉特異的に発現する遺伝子のプロモーターによって配列特異的な組換え酵素とその標的配列を利用して導入遺伝子を花粉や種子から除去する遺伝的改変遺伝子除去技術(genetically modified gene deletor)などの利用が考えられる。

遺伝子組換え作物と遺伝的多様性

更に、組換え品種を大量に栽培すると遺伝的多様性が失われるのではないかという懸念も、組換え品種特有の問題ではなく、在来品種においても少数の品種の大規模栽培に伴う問題である。農業も産業である以上、経営上有利である高品質で低コストなどの競争力の高い品種が現れれば、遺伝子組換え作物に限らず栽培が広がる。その過程で競争に敗れた品種は淘汰される。しかし、野生種や競争力の低い旧来の品種にも重要な遺伝子やゲノム構造が存在しているため、その維持・保存は重要である。

一方、遺伝的多様性を維持していく上で、遺伝子組換え技術は大いに役立つという意見もある。その意見は、

  • 従来の育種法において、多くの品種を育種材料として用いてそれらに新たな形質を導入することは、きわめて多数の試料を扱うことになり困難である。そのため、比較的少数の品種等しか育種の材料になれず、育種材料として選ばれなかったものの遺伝子ゲノム構造の消失する可能性が高くなる。
  • 一方、遺伝子組換え技術を利用した場合では、新たな形質を発現させるための遺伝子発現カセットを多数の品種に導入することは比較的容易である。よって、多数の品種を維持・保存する上で有利である。

という考えに基づいている。つまり、在来品種に遺伝子組換え技術によって有用な遺伝子を導入し競争力を高めることにより、在来品種のゲノム構造が残りやすくなるという意味である。

組換えカノーラもしくはその後代の自生

カノーラの輸入港の近辺や菜種油工場の近辺、更にそこに至る沿道では遺伝子組換えカノーラの自生が確認されている[204]。2015年度(平成27年度)の調査では、ナタネ類の日本の輸入港18港のうち、10港の周辺で組換え遺伝子を持つものが、ナタネ類1215個体中から130個体見つかった[205]。その調査においては、カラシナ又は在来ナタネと遺伝子組換えカノーラとの交雑体は発見されなかった。

その他のアブラナ属作物との交配に関しては、栽培されている作物は雑種第一代であり、その他、品種の純粋性を保つために、種子を栽培農家が毎年購入しているので、アブラナ属作物に遺伝子組換え品種の形質が導入される可能性は低い。なお、現在、輸入されているカノーラBrassica napus(セイヨウアブラナ)であり、複二倍体の種であるためそのゲノム構成はAACC (2n = 38)である。日本で栽培されている多くのアブラナ属作物はBrassica rapa(ゲノム構成: AA, 2n = 20)かB. oleracea(ゲノム構成: CC, 2n = 18)かB. juncea(ゲノム構成: AABB, 2n = 4x = 36)であり、カノーラとの交雑も報告されているが、同種間に比べ交雑と発芽の可能性は低く、また交雑したものの稔性も低い。しかし、野生化しているB. rapaと遺伝子組換えカノーラとの交雑した植物体(ゲノム構成: AAC, 2n = 3x = 29)の自生も確認されている[204]。なお、日本で栽培されているB. napusはセイヨウアブラナ、芯摘菜、かぶれ菜、のらぼう菜、三重なばな、などである。

組換えダイズとツルマメの交雑頻度

ダイズ(Glycine max)の原種であるツルマメ(G. soja)は、日本を含む東アジアやシベリアで自生している。ツルマメもダイズも閉花受粉による自家受粉性の強い植物であるが、ツルマメとダイズは交雑可能である。そのため、組換えダイズを東アジアで栽培すると導入遺伝子がツルマメに拡散する可能性が指摘された。そこで、どの程度の交雑頻度であるのかを調べる定量分析が行われた。ダイズとツルマメが絡みつくくらいに混植した混植区と2 m, 4 m, 6 m, 8 m, 10 m離して植えた距離区が設定、供試された。また、花期の異なる組換えダイズ品種を複数種類用いると共に、播種時期をずらして、できるだけツルマメと組換えダイズの花期を合わせるようにした。そしてツルマメに結実した種子のみを回収して解析した。その結果、混植区では、25,741個体中、交雑個体は35個体であり、また、距離区(66,671個体)においても、遺伝子組換えダイズから2 m、4 m、6 mの距離区での交雑個体はそれぞれ1個体、8 m、10 mの距離区では交雑個体は認められないという結果になった。このことから、意図的に交雑頻度を上げるような操作を行っても、組換えダイズとツルマメの交雑は極めて低頻度であることがわかり、通常の栽培条件では更に低頻度になることが予想された[36][206][207]

Btトウモロコシ花粉の生態系に与える影響

生態系に与える他の影響として、Btトウモロコシの花粉がトウモロコシ畑の近傍の有毒雑草であるトウワタにかかり、それを食草とする蝶・オオカバマダラの幼虫の生育を阻害して生存率を下げたという報告が有名である[208]。この論文は、実験室内でトウワタの葉にBtトウモロコシ、トウモロコシ栽培品種の花粉をかけたものとかけなかったものを餌としてオオカバマダラの幼虫を飼育して経時的に体重と生存率を測定したものである。その際に、トウワタに散布した花粉の密度が、"Pollen density was set to visually match densities on milkweed leaves collected from corn fields."と非定量的であるにもかかわらず、体重変化や生存率を定量的に示したという問題点を含んでいる。著者らが、"it is imperative that we gather the data necessary to evaluate the risks associated with this new agrotechnology and to compare these risks with those posed by pesticides and other pest-control tactics."と述べているように、Btトウモロコシの栽培と慣行栽培によるリスク評価の比較を行うことは重要である。すなわち、殺虫剤の散布に伴う生態系への影響や残留農薬、食害に伴う微生物汚染などのリスクとBtトウモロコシのリスクを比較する必要がある。たとえば、慣行農法によって殺虫剤をまくことによって害虫以外への影響とBtトウモロコシの栽培による影響を相互比較した場合、どちらが生態系への影響が大きいかを検定することなどである。なお、Bt toxinを生産させるための発現カセットのプロモーターを花粉で発現しないものにすることにより、花粉に含まれるBt toxinの量は激減させることができる。MON80100[37]やMon809[38]などのように、Btタンパク質が花粉中にはほとんど含まれないが他の組織には含まれるトウモロコシ組換え品種などがその例である。なお、全ての組織で強く発現するとされるCaMV 35sプロモーターやその改変したもの、他のウイルスのプロモーター、ユビキチン熱ショックタンパク質類似タンパク質の遺伝子のプロモーターなどがBt toxin生産に使用されている組換え品種でも、花粉中にはBt toxinはほとんど含まれていない。また、全組織で強く発現するとされるプロモーターを用いた場合でも、得られた形質転換植物の系統の中からBt toxinを花粉では生産しない系統を選択することでも避けられる。

なお、国内外の大学の生物学の教科書として広く利用されている「キャンベル生物学」において、この論文や論争については以下のように記載されている[209]

One laboratory study indicated that the larvae (caterpillars) of monarch butterflies responded adversely and even died after eating milkweed leaves (their preffered food) heavily dusted with pollen from transgenic Bt maize. (オオカバマダラというチョウの幼虫(芋虫)は、(この蝶が好む食物である)トウワタの葉に形質転換Btトウモロコシの花粉を大量に降りかけられた後に食べると、有害な反応を示し死ぬことさえあったということを、ある研究室の研究が示した。) This study has since been discredited and affords a good example of the self-correcting nature of science. (この研究は、もとより信用されず、科学の自己の過ちを修正する特性のよい例を提供している。) As it turns out, when the original reserchers shook the male maize inflorescences onto the milkweed leaves in the laboratory, the filaments of stamens, opend microsporangia, and other floral parts also rained onto the leaves. (結局のところ、もともとの(論文の)研究者がトウモロコシの雄花をトウワタの葉に実験室でふりかけたとき、雄蕊の花糸やはじけた花粉嚢と他の花の部分も葉に降り注いでいた。) Subsequent research found that it was these other floral parts, not the pollen, that contained Bt toxin in high consentrations. (引き続き行われた研究は、Bt毒素を高濃度で含んでいたのは、花粉ではなく、これらの他の花の部分であることを明らかにした。) Unlike pollen, these floral parts would not be carried by the wind to neighboring milkweed plants when shed under natural field conditions. (花粉とは異なり、これらの花の部分は自然な圃場の環境下で落下した場合、風により隣接するトウワタの植物体に運ばれない。)

このようにこの論文の評価はほぼ定まっている。

除草剤耐性雑草の増加による環境負荷

除草剤に耐性を持った遺伝子組み換え作物が幅広く普及した要因の一つには、単一の薬剤を一度使用するだけで雑草を一挙に取り除ける事から手間もコストも環境負荷も従来より低減するという利点があると考えられている。しかし、複数の除草剤を使い分けていた従来の手法と違い、単一の除草剤だけに頼った事で雑草の側が容易に除草剤への耐性を獲得してしまい、除草剤が効果を発揮しづらくなる事例が増加している[210]

雑草の耐性獲得を防ぐ為には、遺伝子組み換え作物とそれに対応した単一の除草剤ばかりを使用せずに、輪作・耕作・耕起・複数の除草剤の使用といった、従来の手法を組み合わせる必要があるが、そのような従来の手法に回帰すればするほど、手間、費用、環境負荷といった、遺伝子組み換え技術の利点が失われると指摘されている[211][212]。(→ラウンドアップ耐性雑草の世界的な問題)

経済問題

概説

組換え品種を開発した企業が、種子の支配を通じて食料生産をコントロールすることにつながるのではないか、という懸念が出されている。多くの場合、組換え種子の販売会社と生産農家は、収穫した種子の次回作への利用を禁止する契約を結んでいる。更に、組換え種子を毎作毎に農家に購入させるための手法として、一時期、結実はできるが得られた種子から発芽できないようにする、いわゆる「ターミネーター技術」が導入された組換え品種の開発が行われたが、批判も多く、現在、販売されているものの中にはない。

F1品種の多いトウモロコシなどを除き、カノーラやダイズの組換え品種に関しては農家による自家採種によって違法増殖され紛争になることがある。上記のラウンドアップ耐性作物を開発・販売しているモンサント社は農家の農家の自家採種に対して「特許侵害」として数多くの訴訟を起こしており、これに反発する農家も存在する[213]

その他、農家による自家採種には、経済的な側面以外にも、Bt toxin生産作物などの害虫抵抗性品種に関してはBt toxin抵抗性害虫の出現を助長するという重大な問題を含んでいる[27]

その他の経済問題として、組換え作物の方が収量が低いという指摘がある(Benbrook reports[214]など)一方、逆に組換え作物の方が収量が高く経済的にも有利であるという報告もある。

組換え作物栽培による農民の経済的利益

1995年から2014年3月までの組換え作物の経済問題に関する147報の研究報告を基に組換え作物の経済問題に対する包括的なレビューが報告された[215]。それによると様々な形質を持つ組換え作物(主に害虫抵抗性トウモロコシとワタ、除草剤耐性ダイズとトウモロコシとワタ)の結果を纏めた結果として、収量は21.6%増加、農薬使用量は36.9%減少、農薬費用は39.2%減少、全生産費用は3.3%増加、農民の利益は68.2%増加することが判明した。更に害虫抵抗性と除草剤抵抗性作物に分けて解析すると、害虫抵抗性作物の収量は21.98%増加、農薬使用量は38.97%減少、農薬費用は39.45%減少、全生産費用は3.94%増加、農民の利益は60.01%増加することが、除草剤抵抗性作物の収量は21.98%増加、農薬使用量は6.02%減少、農薬費用は36.21%減少、全生産費用は5.51%減少、農民の利益は56.48%増加することが明らかになった[216]

種子の支配と種苗会社の寡占化

毎作毎に種子を購入する必要性を通じて、開発した種苗会社による種子の支配が強化されるという批判がある。これは、農民には収穫した種子の一部を次回作に利用する権利があり、それを侵害することになるという意見である。しかし、これは、組換え品種に限定された問題ではない。

現代農業では、交雑による雑種第一代が栽培されている。F1品種に実った種子はF2世代であり、F2世代は遺伝的に不均一であるため、F2世代は栽培可能ではあるが、F2世代を栽培すると様々な表現型の植物の雑多な集団となってしまう。そのため、栽培管理上著しく不利になってしまう。

そこで、F1品種を栽培する場合、安定して同一形質の作物を得るためには、毎作毎に種子を購入しなくてはならない。更に、F1品種でなくても自家採種した種子は、遺伝的な純粋性の問題、病原菌汚染や種子の品質の問題、その品種名を名乗って販売する場合の種苗法の問題があり、多くの農家が種子を種苗会社から購入している現状がある。つまり、特定企業による種子の支配の問題は、遺伝子組換え品種に特有の問題ではない。

一方、この意見に対する反論もある。従来の交配や突然変異による育種において優良な品種を開発するためには、扱う材料が膨大で、人員や時間が大量に必要で費用がかかる一方、優良な品種が得られる確率が低かった。それに対して、遺伝子組換え育種では、アイデアさえよければ比較的短期間・低コストで優良な品種を育種できる確率が高いために、小資本のベンチャー企業や小規模な研究機関でも組換え品種の開発に参入できた。

ただし、組換え品種を開発すること自体は比較的容易であっても、それを商品化して上市するためには安全性審査に合格する必要がある。安全性審査には多額の費用と時間がかかるために、小資本のベンチャー企業や中小資本の種苗会社や中小研究機関にはその余裕がなく、それに耐えられる大資本の種苗会社に企業ごと買収されたり、特許を売却したりすることにつながった。つまり、遺伝子組換え品種に対する規制の強化の結果として、大資本の種苗会社による寡占化が進んだという解釈も成り立つ[217]

その他、組換え品種の多いトウモロコシ、ダイズ、ワタ以外の果樹や野菜やバイオ燃料用作物においても、様々な形質の組換え品種が開発されているが、それらの多くは商業化されていない。その理由としても、同様のことが指摘されている[218]

更に、別の問題によって寡占化が進んでいるという指摘もある。日本で組換え食品の安全性審査を多数の申請業務を経験しているのは数社の大手企業だけであり、それらの会社では申請のノウハウが蓄積され、提出文書も改善されている。

しかし、例えば、ウイルス抵抗性パパイヤの安全性審査の申請を行ったハワイパパイヤ産業協会などのように、食品安全委員会に組換え作物・食品の商業利用申請を出すことが今後少ないであろう小企業や大学などは、食品や環境への安全性審査に多大な時間と経費を要し、そこで得たノウハウをさらに活用する機会が少なければ、商業化への意欲も低下し、ひいては研究・開発活動自体が停滞・縮小していくとも考えられる[219]

多国籍組換え作物開発種苗会社と国際的な知的財産権

農作物の生育には、地域の気候土壌との適合性が重要である。このため、多国籍種苗会社といえどもすでに実績のある種苗を輸出するためには、その種苗に適した類似の気候や土壌の地域に限られる。既存の品種に適さない気候帯や土壌特性の地域に輸出した場合は期待通りの収穫は得られない。そこで、現地で新たな品種を育種しなければならない。

ところが、進出するに当たり問題になるものは知的財産法制度である。知的財産法制度は各国固有のものであるために、種苗に対する知的財産権保護の制度やその実効性は国や地域によって異なる。例えば、米国では特許を得ている種苗などの知的財産であったとしても、仮に外国で保護の対象とされていなければその国内での増殖は違法ではないし、特許権ではなく種苗育成者権でしか保護されていなければ、その種苗を用いた新品種の育種も違法ではない[220]

そのため、知的財産法制度やその実効性が乏しい国や地域に、多国籍種苗会社は進出しにくくなるとも考えられる。しかし、知的財産法制度の整備よりも、実際には"進出企業数が可耕面積と公的種苗販売者数に正の相関を持つという結果は,利潤に敏感な多国籍種苗企業の行動を端的に示すものであろう。"という解析が出ている[220]

更に、作物や品種によって種苗会社の知的財産権保護の実効性が異なる。トウモロコシの雑種第一代のように、毎作毎にF1種子を購入しなくてはならない品種の場合は、種苗会社の知的財産権は比較的守られることになる。一方、コメやコムギやダイズのように、優先的に自家受粉するため遺伝子座ホモ接合性の高い作物の固定された品種では、実った種子が親と同じ遺伝形質を持つので、ジャガイモやイチゴのように、栄養繁殖するものと同様に違法な増殖を防ぐ実効性が乏しくなる。

事実、アルゼンチンで栽培されていたモンサントが育種した遺伝子組換えダイズ(ラウンドアップレディー・ダイズ)のほとんどが、違法に増殖されていたものであること("モンサント・アルゼンチン社の広報担当者によると,同国で撒布された大豆種の18%しか合法な種でないという(La Nacion, 2004年1月20日)。", p.72-73[220])が報告されている。

このことは、種苗会社の知的財産権が守られやすいF1作物やその組換え品種を好んで育種するというように、種苗会社がどのような作物を選択して育種するのかということにも関係してくると考えられる[220]。また、違法増殖があった場合には、多国籍種苗会社が種子の販売を停止する場合がある。

例えば、前述の違法に組換えダイズを大量に栽培していたアルゼンチンに対して、

モンサントのアルゼンチン法人は、大豆生産第三位国のアルゼンチンにおける大豆種販売を2003年12月に停止し、2004年1月18日にはGM トウモロコシ,GM モロコシ,新品種のひまわりなど、交雑作物に販売の重点を移すことを発表した(Reuters, 2004年1月18日)。翌日,モンサントは状況が好転したら、大豆種販売を再開するとも発表している。2004年2月、違法行為を放置し続けてきたアルゼンチン政府も、ロイヤルティ支払いのために基金を設立することを明らかにし、モンサント社の“脅し”に応えている(St. Louis Business Journal, 2004年2月20日)。

と報道(p. 52, 右 5-14行[220])された。

このような行為を「企業による種子の支配」ととらえるか、侵害された知的財産権を回復するための「正当な行為」ととらえるか、意見が分かれる。なお、ラウンドアップレディー・ダイズに対する特許料支払いに関しては、アルゼンチン政府とモンサントだけではなく、アメリカ合衆国連邦政府も巻き込んで、2005年以降も交渉がもめており[221][222]、知的財産権の国際的な紛争解決の困難さを示している。

シュマイザー事件

1998年、カナダモンサント社はカナダ、サスカチェワン(Saskatchewan)州の農民、パーシー・シュマイザー(Percy Schmeiser)の農場でラウンドアップ耐性ナタネ(カノーラ: canola)が無許可で栽培されていることに対し特許権侵害で訴訟を起こした。シュマイザーは種子に特許が存在しないこと、農場のナタネの9割以上がラウンドアップ耐性ナタネになっていたのは意図的に栽培したのではなく周辺で栽培されているラウンドアップ耐性ナタネによる「遺伝子汚染」の結果であると主張した。しかし、交雑等の可能性があっても約400 haに植えられたナタネの95-98%のナタネがラウンドアップ耐性ナタネになることは現実にはあり得ないとしてカナダ最高裁はモンサント社に対する特許侵害を認めた。下級審の判決を妥当としシュマイザーは敗訴した。

まず、カナダ連邦裁判所が2001年3月29日に下した判決[223]では、シュマイザーがラウンドアップを噴霧器で自ら噴霧してラウンドアップ耐性ナタネを意図的に選択して増殖し、栽培したことを認定した。

また、2002年9月4日のカナダ連邦控訴裁判所の判決[224]においても、シュマイザーの控訴事由を三人の判事が全員一致で全て退けた。2004年5月21日にカナダ最高裁判所によって下された判決[225]においても、シュマイザーは敗訴した。

種子に対する特許が認められたことに対しカナダの市民団体と生産者団体は強く反発している。

シュマイザーは自らを遺伝子汚染の被害者として、遺伝子組換え作物反対派と共に日本国内でもたびたび反対活動を行っている。

インドにおけるBtワタ栽培と農民の自殺の関係の有無

イ ンドでは2002年から遺伝子組換えBtワタが導入され、その栽培面積は急激に広がっている。緑の革命に対する批判者としても、遺伝子組換え食品反対派としても国際的に著名なインドの環境活動家であるヴァンダナ・シヴァ(Vandana Shiva)らは、「インドにおいて遺伝子組換 えBtワタの種子の導入はコストを80倍にし、農民を借金漬けにして自殺に追い込んだ。27万人以上のインドの農民が高価な種子と農薬による借金のために 自殺した。そして大部分の自殺はワタ栽培地帯に集中している。」[226]と主張している。しかし、別の調査によれば、遺伝子組換えBtワタがインドに導入される以前の1997年から大幅に栽培面積が増加していった2007年にかけて10年間のインドの農民の自殺数にほとんど変化は認められず、自殺数と遺伝子組換えBtワタの栽培面積の間に相関も見いだせなかった(インドの農民の年間自殺数とBtワタ栽培面積の変化のグラフ)。このことから「ネイチャー」は2013年の5月2日号で、シヴァらの主張は誤りであるとした[227]

倫理面

宗教上やその他の信念により遺伝子操作自体を忌み嫌う人も存在し、反対活動を行っている。一方、ゴールデンライスのように人道的なものにまで反対することに対しては反発もある。

ゴールデンライスと遺伝子組換え食品反対運動

ビタミンA欠乏症[228]を解消することは世界保健機構(WHO)や国際連合児童基金(UNICEF)においても主要目標である(A Strategy for Acceleration of Progress in CombatingVitamin A Deficiency)。WHOによると、 推定2億 5千万人の未就学児がビタミンA欠乏症であり、ビタミンA欠乏地域では多数の妊婦もビタミンA欠乏症である[229][230]。そして、推定25万人から50万人の子供たちが毎年、ビタミンA欠乏症で失明し、その半数が一年以内に死亡している。そのような子供たちは南アジア東南アジアの都市部のスラムに住む貧困家庭に多い。ビタミンA欠乏症を解消するために、主食であるコメビタミンA前駆体であるβ-カロテンを含むようにしてビタミンA欠乏症を緩和しようと育種されたものがゴールデンライスである[231]

このゴールデンライスに対しても反対する遺伝子組換え食品反対派はいる。前述のヴァンダナ・シヴァの主張は、

ビタミン含有率が高い遺伝子組み換えのゴールデンライスの開発に対して、イギリス[注釈 76]のビタミン不足の子どもたちのために開発しているのになぜ反対かと、ヴァンダナ・シヴァさんが責められた。答えは、「そんなものはいらない。リンゴひとつ食べればビタミンは補えるもの」。バランス良く食べれば、そんなものはつくる必要がないし、ほんとうに栄養不足の子どもたちの役にたつわけでもない。そして、ゴールデンライスみたいな画一的な圃場(ほじょう)をつくるためになぎ倒された、たくさんの薬草でビタミンを補給していたインドの子どもたちが、年間4000人[注釈 77][注釈 78]失明していると反論していました。

と紹介されている[232]。この主張に対しては、リンゴビタミンAの供給源としては不適切である[233]という栄養学的な反論と、貧困家庭の人々がバランスが良い食事がとれないためにビタミンA欠乏症に陥っている[234][39][40]という現実を無視しているという反論[要出典]がなりたつ。

また、ヴァンダナ・シヴァの主張の中には、色素米[注釈 79]や茶米[注釈 80]には多量のビタミンA前駆体が含まれているのでゴールデンライスを開発する必要がないというものがある[235]。しかし、玄米には極僅かのβ-カロテンが含まれるために痕跡量のレチノール当量のビタミンA活性があるがビタミンAの供給源としては不適切であり、精米された白米にはないといって良い[236]。赤米の色素はタンニン系であり[237]、黒米の色素はアントシアニン系である[238]。つまり、ビタミンAに変換されるカロテノイド系の色素ではないため、赤米や黒米はたとえ玄米であったとしてもビタミンAの供給源にはならない。

この様なゴールデンライスに対する反対に対して、ゴールデンライスの開発者(Ingo Potrykusら)や推進派の中には、人道に反すると反発する考えもある[239][240][241]。また、ゴールデンライス導入の遅れに伴うビタミンA欠乏症に関係する健康被害にゴールデンライスの反対派は責任をとるべきである、という意見もある[242]

食品としての安全性

概説

  • 従来考えられないほどの短い期間で新品種の開発が行われる。
  • 従来はありえなかった「種の壁を越えた」品種開発が可能である。

などを根拠に安全性を保障する実績がないとして忌避する意見も根強い。しかし、従来の非GM作物であっても100%の安全性証明がなされているわけではなく、暗黙のうちに「危険性」が許容されている。また、「種の壁」は一般に信じられているほど強固なものではなく、遺伝子の水平伝播雑種形成も知られていることなどを考えるべきで、一般的に行われている品種改良を無視して、GM作物だけを問題視するのは公正とはいえない。GM作物の安全性については「実質的同等性」の概念に基づいた議論が重要である。ヒトのタンパク質消化において大部分はアミノ酸にまで分解されてから吸収されるため、よほどでない限り遺伝子組換え作物によって変化したアミノ酸配列の僅かな違いが消化・吸収に大きな影響を与えるとは考えにくい。

事実、様々な組換え作物と非組換え作物を飼料として多くの家畜に投与し、様々な生化学的、生理学的、組織学的差異を調べる大規模な研究を行ったが、如何なる有意な差異を見いだせなかったという包括的なレビューを欧州食品安全機関(European Food Safety Authority: EFSA)が発表している[243]

また、組換え食品は解放系での栽培や上市されるまでにさまざまな安全性審査を受けて、それに合格したものである。一方、組換え作物の比較対象となる在来品種は、組換え作物が受けるような安全性審査を経たものはほとんどなく、その安全性は組換え作物に比べ未知数であるという解釈も成り立つ。

以下の節でいくつかの特記すべき事例について論じる。

害虫抵抗性トウモロコシにおけるカビ毒含有量の低下

ある種の組換え作物の方が食品としての安全性が高いという報告がある。これはBt toxinを発現しているトウモロコシYieldGardの方が野生型の栽培種に比べ含有しているカビ毒(mycotoxin)量が数倍から20倍程度少ないというものである[244]。昆虫などによって摂食された傷口からカビが侵入し繁殖するため、Bt toxinを発現していると摂食されにくくなるためカビ毒が大幅に減少したと考えられている。カビ毒には発ガン性や女性ホルモン活性などを有し、様々な疾患を引き起こすものがあることが知られている。このように現在判明している食品としての安全性検査ではある種の組換え作物の方がむしろ有利であるとの解釈も成り立つ。

ブラジルナッツ 2S アルブミン蓄積ダイズ

ダイズ種子の貯蔵タンパク質のアミノ酸組成では、含硫アミノ酸であるメチオニンシステインが少ない。そのため、ダイズ・タンパク質の有効利用率を表すプロテインスコアアミノ酸スコアが低い。そこで、ダイズ種子にメチオニンシステイン含量の高いタンパク質を蓄積させてタンパク質有効利用率を向上させようという研究が行われた。メチオニン残基が18%、システイン残基が8%と高含量で含まれているため、蓄積させるタンパク質としてブラジルナッツ(Bertholletia excelsa)の2S アルブミン(S: 沈降定数、Svedberg単位)が選ばれた。ただし、既にブラジルナッツなどのナッツ類に対するアレルギーが知られていた。主要なアレルゲンとして分子量9 kDaの2S アルブミンと42 kDa タンパク質、その他の複数のアレルゲンとなるタンパク質があることが判明している。遺伝子組換え作物は、上市される前に安全性審査を経なければならず、その中にはアレルギー試験も含まれている。その審査過程で、ブラジルナッツ 2S アルブミン蓄積ダイズは、一部のブラジルナッツ・アレルギー患者にアレルギーを誘発する可能性があることが判った[245]。一部のブラジルナッツ・アレルギー患者由来の血清中の免疫抗体IgEは、形質転換ダイズ中の9 kDaのブラジルナッツ 2S アルブミンやその前駆体と抗原抗体反応を起こすことが判明した。また、ブラジルナッツ・アレルギー患者に対するアレルギー試験の一種である皮膚プリックテストにおいても同様の結果が得られた。この結果を受けて、この形質転換ダイズの上市は中止された。植物に遺伝子を導入する以前に遺伝子産物に対するアレルギーの確認が可能であったにもかかわらず、商品化の過程の安全性審査で判明したことに問題がある。この件は、導入される遺伝子の産物に対する事前の細心の注意が必要であることと、安全性審査が有効に機能したことを示している。

スターリンク事件

2000年9月以降、アメリカにおいて食品としては未認可であるが飼料としてのみ認可された組換えトウモロコシであるスターリンク(Starlink)(系統名: CBH351)が食品からも検出された事件である。食品としても飼料としても未認可であった日本においても食品から検出された。そのため、大規模な回収騒動が生じた。スターリンクはアグレボ社(事件当時はアベンティス(Aventis)社、現在のバイエルクロップサイエンス社)が開発したものであり、除草剤であるビアラホスに耐性が付与されるとともにBt toxinとしてCry9C(アミノ酸配列)を生産している。Bt toxinには様々な種類があり、そのアミノ酸配列や殺虫スペクトルは異なっている。Bt toxinを生産する組換え作物は様々あるがCry9Cを生産するものが飼料としてのみ認可された理由は、アレルゲンとなる可能性が考慮されたからである[41]。Cry9Cはペプシントリプシンに対して安定であり、90℃で10分間安定であった。そこで、調理や消化後も安定であると考えられ、免疫系と反応する可能性が指摘された。一方、既知のアレルゲンとはアミノ酸配列の配列類似性は低かった。タンパク質としての安定性を重視した結果、飼料としてのみスターリンクは認可された。スターリンクのBt toxinのアレルゲン性は低いことがのちに判明した[246]

この事件の教訓として、隔離栽培の厳守とモニタリングの必要性、飼料としても食料としても利用される作物は厳密に管理されていてもある程度の混入は不可避であるため飼料としてのみではなく食品としても認可されたものを上市する必要性、がある[247]

ニューリーフ・ポテト

モンサント社のニューリーフ・ポテトはアメリカの環境保護局(U.S. Environmental Protection Agency: EPA)に農薬として登録された。しかし、日本では農薬としては登録されていない。ニューリーフ・ポテトBT-6系統[42]やSPBT02-05系統[43]とはBacillus thuringiensisの結晶性殺虫タンパク質(Bt toxin)の種である一種であるCry3Aを生産してコロラドハムシ(Colorado potato beetle, Leptinotarsa decemlineata)というジャガイモの害虫に抵抗性を持たせたジャガイモのことである。付け加えて、更にある種の植物ウイルスに抵抗性も持たせたニューリーフ・プラス・ポテト[44]やニューリーフY・ポテト[45]の系統も存在する。ニューリーフ・ポテトにおいて生産されているBt toxinであるCry3Aは哺乳類に対する安全性が確認されたタンパク質であり、ニューリーフ・ポテトに関する安全性は様々な安全性試験によって確認されている。農薬を使い害虫駆除をするようなこととは違い、ポテト自体に害虫を殺す作用があるという理由で、ポテト自体が通常の農薬としてEPAに登録された。なお、ニューリーフ・ポテトと同様にBt toxinを生産しているトウモロコシやワタの複数の系統が組換え作物として認可されており、これらにもニューリーフ・ポテトと同様に作物自体に害虫を殺す作用があるが、これらは農薬として登録されたことはない。なお、害虫抵抗性植物に含まれる殺虫活性物質とその生産に必要な遺伝物質(PIPs: Plant-Incorporated Protectants)に対する現在のEPAの方針は、

Plant-incorporated protectants are pesticidal substances produced by plants and the genetic material necessary for the plant to produce the substance. For example, scientists can take the gene for a specific Bt pesticidal protein, and introduce the gene into the plant's genetic material. Then the plant manufactures the pesticidal protein that controls the pest when it feeds on the plant. Both the protein and its genetic material are regulated by EPA; the plant itself is not regulated.

と公表されている[46]ように、EPAは植物の生産する殺虫タンパク質と遺伝物質を規制しているが、それを生産する植物自体を規制してはいない。

ラウンドアップレディー・ダイズを給餌した多世代飼育試験

遺伝子組換え食品の安全性審査においては、急性および亜急性毒性の審査しかしていない、多世代にわたって給餌した際の安全性を調べていない、という批判がある。そこで、ラウンドアップレディー・ダイズの安全性に関しては、多世代の動物飼育における給餌実験によって試験された。例えば、サウスダコタ大学のグループは4世代にわたってマウスにラウンドアップレディー・ダイズを給餌しても、何ら悪影響を見いだすことができなかった、と報告した[248]。また、東京都の健康安全研究センターも2世代にわたるラットへの給餌試験を行ったが何ら有意差を見いだせなかった[249][250]。同様な研究は多数行われている。2-4世代にわたる多世代飼育実験の世代数が十分かどうかについては異論があるかもしれないが、これらの実験においては少なくともこの世代数では有意な危険性を検出できなかったといえる。

パズタイ事件

一方、健康への影響例としてよく挙げられるものに「遺伝子組換えジャガイモを実験用のラットに食べさせたところ免疫力が低下した。」と世間に大きな衝撃を与えたレポート(パズタイ(Pusztai)[注釈 81]事件)がある。1998年8月10日、スコットランドのアバディーン(Aberdeen)のロウェット研究所(Rowett Research Institute)のパズタイ(Arpad Pusztai)が、英国のテレビ番組で、組換えジャガイモにより、ラットに免疫低下などがみられたと公表した。論文は1999年のLancetの10月16日号まで公表されず、主張の妥当性を検証できない状態であったにもかかわらず、一部の間ではさも真実であるかのように受け取られ大騒ぎになった。しかし、公表された論文からは実験そのものがずさんであり、パズタイの主張には無理があることが判明した。使用した遺伝子組換えジャガイモが安全性が確認され商品化されているジャガイモとは全く別なレクチンという哺乳動物に対し有害な作用を持つタンパク質を作る遺伝子を組み込んだ実験用ジャガイモであり、有害な遺伝子を組み込んだ遺伝子組換え作物は有害だったと当たり前の結果が出たに過ぎない。この実験は、マツユキソウの殺虫活性のあるレクチン(GNA)を生産する組換えジャガイモ、親株のジャガイモにレクチンを注入したもの、親株(母本)のジャガイモ、を生のままものと茹でたものに分け、6頭ずつのラットに10日間与えて消化管を調べたところ、炎症や免疫の低下が組換えジャガイモを飼料としたものにみとめられたというものである[251]。なお、レクチン(GNA)を注入されたジャガイモは、遺伝子組換えジャガイモの親株(母本)とは、かなり組成の異なるものであったという報告もある[252]

この実験には栄養学的な問題や検定数が少ないという問題以前に実験の設計段階での欠陥として、

  • レクチンの遺伝子を含まない空のベクターを用いて形質転換した、つまりレクチンを生産しない組換えジャガイモと、更にそれにレクチンを注入した2種類の対照(コントロール)がない。
  • 注入したレクチンが複数のレクチンの混合物でないことを証明していない(組換え体は単一の遺伝子に由来するレクチンを生産しているが、実験で用いられたレクチンは単一の遺伝子産物であるという証明がなされていない)。
  • 遺伝子組換えと関係がない、組織培養に伴う体細胞変異を考慮していない。(組織培養に伴うトランスポゾンの活性化による変異以外にも、ジャガイモのような栄養繁殖植物の場合、植物体は変異の蓄積した細胞のキメラ集団として存在していることが多い。そのため、何ら変異処理をしなくても単細胞となるプロトプラストにして植物体を再生させると様々な表現型の変異株が得られることがある。)

という点が挙げられる。実験設計の不備のため、この実験によって遺伝子組換え自体によって危険性が増すという結論を導き出すことはできない。この論文に関しても、社会的な問題が大きいから論文の内容にかかわらず掲載することにしたという異例の編集者の意見が明記されて掲載された経緯がある[253]。それには以下のように記されている。

While criticising the researchers' “sweeping conclusions about the unpredictability and safety of GM foods”, he pointed to the frustration that had dogged this entire debate: “Pusztai's work has never been submitted for peer review, much less published, and so the usual evaluation of confusing claim and counter-claim effectively cannot be made”. This problem was underlined by our reviewers, one of whom, while arguing that the data were “flawed”, also noted that, “I would like to see [this work] published in the public domain so that fellow scientists can judge for themselves… if the paper is not published, it will be claimed there is a conspiracy to suppress information”.

この論文に関しては更に著者らとの異例の誌上討論が行われた[254]。そこでは空のベクターを用いていないという指摘に対して、著者らは、

If our experiments are so poor why have they not been repeated in the past 16 months? It was not we who stopped the work on testing GM potatoes expressing GNA or other lectins or even potatoes transformed with the empty vector, which are now available.

と、実験において空のベクターを用いていなかったことを明確に認めている。

背景

上記のような一般消費者の不安の背景として以下のようなことも指摘、主張されている。

  • GM作物を推進する側の研究・行政サイドから市民へのGM作物に関する広報活動はこれまで充分であったとは言いがたく、反対派の先行を許してしまったことが今日の混乱を生んだ面がある。
  • 一般人の科学知識の欠如により正確にGM作物が理解されていない。

以上2点は、研究開発に関わる側からよくなされる指摘であるが、反対派からは自らの視点が絶対に正しいと決め付けているとの批判もある。

  • 遺伝子組換え食品に対して、一般消費者のバージンバイアスがかかっている。経験豊富な事柄に対してはリスクを過小評価するベテランバイアスがかかり、初めてのものに対してはリスクを過大評価するバージンバイアスがかかる傾向がある。
  • 「遺伝子組換え作物を人体に危険なものと消費者に訴え、自社商品の売り上げを伸ばそうとする非遺伝子組換え食品商法に走る業者」等[47]ネガティブキャンペーンがある。
  • 政府に対する信用が低い。イギリス政府はBSE問題の収拾に失敗し、日本では薬害など厚生労働省の失態や国内でのBSE発生(農林水産省)が報じられ国民の信用が低下していた。どちらの国も遺伝子組換え作物の規制が厳しい。しかし、各国の政府に対する信用と各国の遺伝子組換え作物に対する政策に対する相関性は報告されていない。なお、一般の日本人の遺伝子組換え作物に対する見方は『平成22年度遺伝子組換え農作物等に関する意識調査報告書』[255]において、一般のイギリス人の遺伝子組換え作物に対する態度は"Exploring attitudes to GM food Final Report"[256]において詳しく研究され纏められている。

注釈

  1. ^ Ignite/Basta、 Glufosinate (グルホシネート)、Herbiace等の名称で販売されている。
  2. ^ グルタミン合成酵素の阻害剤として実際に作用するのは、ビアラホスから2分子のアラニン残基が加水分解により遊離したホスフィノスリシン英語版である。
  3. ^ phosphinothricin N-acetyltransferase: PAT, EC 2.3.1.183, 反応
  4. ^ bromoxynil: 3,5-dibromo 4-hydroxybenzonitrile, BXN, CAS No. 1689-84-5
  5. ^ ioxynil: 3,5-diiodo 4-hydroxybenzonitrile
  6. ^ bromoxynil nitrilase, EC 3.5.5.6, 反応
  7. ^ EC 2.2.1.6, ALS: acetolactate synthase(アセト乳酸合成酵素), 反応; AHAS: acetohydroxy acid synthase(アセトヒドロキシ酸合成酵素)の両活性を持つ
  8. ^ branched-chain amino acids: BCAA, バリン(L-valine)、イソロイシン(L-isoleucine)、ロイシン(L-leucine)の三アミノ酸の総称
  9. ^ chlorsulfuron
  10. ^ 2,4-dichlorophenoxyacetate2,4-ジクロロフェノキシ酢酸
  11. ^ 2,4-dichlorophenol
  12. ^ 2,4-D monooxygenase, 2,4-D モノオキシゲナーゼ, EC 1.14.11.-, 反応
  13. ^ 申請書においてアリルオキシアルカノエート系除草なっているが、アリルではなくアリールが正しい。フェニル基アリール基の一部であり、2,4-D(2,4-ジクロロフェノキシ酢酸)のフェノキシ基はアリールオキシ(またはアローキシ)基と表記されるべきである。アリルとすると別の官能基であるアリル基と誤解されかねない。
  14. ^ dicamba monooxygenase: ジカンバ モノオキシゲナーゼ, DMO
  15. ^ 4-hydroxyphenylpyruvate dioxygenase: HPPD, EC 1.13.11.27, 反応
  16. ^ 4-hydroxyphenylpyruvate
  17. ^ homogentisate
  18. ^ plastoquinone
  19. ^ 2-methyl-6-phytylquinol
  20. ^ 2-cyano-3-cyclopropyl-1-(2-methylsulfonyl-4-trifluoromethylphenyl)propane-1,3-dione: DKN
  21. ^ mesotrione, 2-(4-メシル-2-ニトロベンゾイル)シクロヘキサン-1,3-ジオン: 2-(4-mesyl-2-nitrobenzoyl)cyclohexane-1,3-dione
  22. ^ Bt11スイートコーン(官報掲載日2001.3.30), MON89034(官報掲載日2007.11.6)
  23. ^ β-lactamase, EC 3.5.2.6, 反応
  24. ^ polygalacturonase, EC 3.2.1.15, 反応
  25. ^ ACC synthase, EC 4.4.1.14, 反応
  26. ^ ACC oxidase, EC 1.14.17.4, 反応
  27. ^ ACC deaminase, EC 3.5.99.7,反応
  28. ^ S-adenosyl-L-methionine hydrolase, EC 3.3.1.2, 反応
  29. ^ 家庭においてもキウイフルーツを追熟させたい場合、エチレンをよく発生するリンゴと同じビニール袋に入れて保存するのも同じ原理である。
  30. ^ DNA adenine methylase、EC 2.1.1.72、反応
  31. ^ choline
  32. ^ choline monooxygenase, EC 1.14.15.7, 反応
  33. ^ betaine aldehyde dehydrogenase, EC 1.2.1.8, 反応
  34. ^ choline oxidase, EC 1.1.3.17, 反応
  35. ^ proline dehydrogenase, EC 1.5.99.8, 反応
  36. ^ trehalose 6-phosphate synthase, EC 2.4.1.15, 反応
  37. ^ trehalose 6-phosphate phosphatase, EC 3.1.3.12, 反応
  38. ^ ascorbate peroxidase, EC 1.11.1.11, 反応
  39. ^ glutathione peroxidase, EC 1.11.1.9, 反応
  40. ^ catalase, EC 1.11.1.6, 反応
  41. ^ superoxide dismutase, EC 1.15.1.1, 反応
  42. ^ a b nicotianamine synthase, EC 2.5.1.43, 反応
  43. ^ nicotianamine aminotransferase, EC 2.6.1.80, 反応
  44. ^ 3"-deamino-3"-oxonicotianamine reductase, EC 1.1.1.285, 反応
  45. ^ 2'-deoxymugineic acid-2'-dioxygenase: IDS3, EC 1.14.11.24, 反応
  46. ^ EC 1.14.19.1, 反応
  47. ^ EC 3.1.2.14反応
  48. ^ 反応
  49. ^ デサチュラーゼ: カルボキシル基の反対側から数えて12番目と13番目の炭素の間に二重結合、Δ6-desaturaseともいう, EC 1.14.19.3, 反応
  50. ^ 反応
  51. ^ 反応
  52. ^ 多くの場合、リシン生産菌としてコリネバクテリウム属細菌のCorynebacterium glutamicumが用いられている。
  53. ^ dihydrodipicolinate synthase: EC 4.2.1.52, 反応
  54. ^ phytoene synthase, EC 2.5.1.32, 反応
  55. ^ フィトエン・デサチュラーゼ: phytoene desaturase: CrtI, EC 1.3.99.31, 反応
  56. ^ lycopene β-cyclase, EC 5.5.1.19, 反応
  57. ^ lycopene ε-cyclase, EC 5.5.1.18, 反応
  58. ^ β-carotene 3-hydroxylase, EC 1.14.13.129, 反応
  59. ^ γ-tocopherol methyltransferase, EC 2.1.1.95, 反応
  60. ^ phytate
  61. ^ phytase, EC 3.1.3.8, 反応, EC 3.1.3.26, 反応
  62. ^ ADP-glucose
  63. ^ starch synthase, EC 2.4.1.21, 反応
  64. ^ branching enzyme, EC 2.4.1.18, 反応
  65. ^ lotaustralin
  66. ^ acetone cyanohydrin: CAS 75-86-5
  67. ^ hydroxynitrile lyase, EC 4.1.2.46, 反応
  68. ^ gossypol
  69. ^ δ-cadinine
  70. ^ farnesyl pyrophosphate
  71. ^ (+)-δ-cadinene synthase, EC 4.2.3.13, 反応
  72. ^ L-asparagine synthetase, EC 6.3.1.1, 反応
  73. ^ "「北海道遺伝子組換え作物の栽培等による交雑等の防止に関する条例」は、GM作物を栽培する場合の規制であり、今回のような場合は対象外", 「遺伝子組換え作物の栽培等による交雑等の防止に関する条例」をめぐる状況
  74. ^ 「日本の家畜飼料は、ほぼその輸入に頼っている。三石誠司・宮城大教授(経営学)の試算では、日本に輸入される全穀物は年間約3200万トンで、半分以上の約1700万トンがGMという。」 食卓どこへ:遺伝子組み換え/1 生協「不使用」から転換 (小島正美、遠藤和行) 毎日新聞 2009年11月2日 東京朝刊
  75. ^ 『フィリピンの国際イネ研究所(IRRI)のロバート・ザイグラー所長は「今こそ遺伝子革命が必要だ」と力説する。「世界を救える技術があるのに規制して使わないのは犯罪に近い」とまで言い放った。』, "遺伝子組み換えに追い風 食糧高騰・温暖化が均衡破る", (庄司直樹), 2008年7月20日 朝日新聞
  76. ^ イギリスではビタミンA不足は深刻な問題となってはおらず、文脈的にもインドと考えられるので、in Indiaをin Englandと、またはIndianをEnglandと聴き間違えたのであろう。なお、紹介者の島村菜津の同一内容を紹介した別の著作においても"ビタミン不足の英国の子どもたち"と記載されている。「世にもマヌケなスローフードへの旅 第19回 インド編 無知な経済学者・政治家が農民たちを苦しめる!」, ECO JAPAN, 日経BP, 2008年05月20日
  77. ^ ヴァンダナ・シヴァ自身は「四万人」と著書の中で述べている。"インドの子供たちは毎年ビタミンA不足で、四万人が視力を失っているが、ビタミンAが豊富でどこにでも生えている植物を除草剤で殺してしまったことが、この悲劇を招いている。", p. 214, 左から3-1行, 「緑の革命とその暴力」, ヴァンダナ・シヴァ 著, 浜谷喜美子 訳, 発行所 株式会社 日本経済評論社, 1997年8月5日 第1刷発行, 旧ISBN 4-8188-0939-X, 現ISBN 978-4-8188-0939-0
  78. ^ 紹介者の島村菜津は、同様の内容を紹介した別の著作では「4万人に近い」と記述している。"「これからは、数年単位ではなくて、もっと長いスパンで考えて、地域を豊かにしていく視点が大切なの。それに、単一品種を効率よく育てれば、薬草やビタミンをたくさん含む野草は、雑草として排除される。小麦とともに育つバツアという薬草は、ビタミンAが豊富なのに、そうしたものが一気になぎ倒される。毎年、4万人に近い子どもたちがビタミンA不足で失明しているこの国で、ですよ」", "かつて、イギリスの学者が、ビタミンAの豊富なGM米「ゴールデンライス」を開発したとき、学者は「なぜビタミン不足の英国の子どもたちを救う研究に楯突くのか」とシヴァを批判した。", "この時も、彼女は「そんな米など必要ない。それより、リンゴを1つかじろうと教えればいい。ビタミン不足で失明している産地の子の身にもなってほしい」と噛みついた。", 「世にもマヌケなスローフードへの旅 第19回 インド編 無知な経済学者・政治家が農民たちを苦しめる!」, ECO JAPAN, 日経BP, 2008年05月20日
  79. ^ 赤米黒米玄米の状態だと色素を含んでいるが、精米すると白米になる
  80. ^ 字義通り茶色の米か、玄米(brown rice)の誤訳かは不明である。なお、農学の分野おいて「茶米」とは、病害や生理障害などを受けて褐色を呈する被害粒やエクアドル茶米菌の増えた米を指す。
  81. ^ プシュタイまたはプッタイとも表記される

出典

  1. ^ GM小麦を初承認 アルゼンチン 食用混入に注視」『日本農業新聞』2020年10月13日(2020年10月22日閲覧)
  2. ^ 遺伝子組換え食品を理解するⅡ, 特定非営利活動法人 国際生命科学研究機構(ILSI) バイオテクノロジー研究会, 2010年9月印刷
  3. ^ a b 安全性審査の手続を経た旨の公表がなされた遺伝子組換え食品及び添加物一覧 厚生労働省医薬食品局食品安全部 平成30年2月23日現在
  4. ^ PNAS, July 18, (2006), vol. 103, no. 29, 11075-11080, "Yellow flowers generated by expression of the aurone biosynthetic pathway", Eiichiro Ono, Masako Fukuchi-Mizutani, Noriko Nakamura, Yuko Fukui , Keiko Yonekura-Sakakibara, Masaatsu Yamaguchi, Toru Nakayama, Takaharu Tanaka, Takaaki Kusumi, and Yoshikazu Tanaka
  5. ^ 高セルロース含量ギンドロtrg300-2 (AaXEG2, Populus alba L.) 第一種使用規程申請書等の概要
  6. ^ 概要は「低リグニンアルファルファ (CCOMT, Medicago sativa L.) (KK179, OECD UI: MON-ØØ179-5) 申請書等の概要」などによって公開されている
  7. ^ チョウ目及びコウチュウ目害虫抵抗性並びに除草剤グルホシネート及びグリホサート耐性トウモロコシ (cry1A.105, 改変cry2Ab2, cry1F, pat, 改変cp4 epsps, 改変cry3Bb1, cry34Ab1, cry35Ab1, Zea mays subsp. mays (L.) Iltis)(MON89034×B.t. Cry1F maize line 1507×MON88017×B.t. Cry34/35Ab1 Event DAS-59122-7, OECD UI: MON-89Ø34-3×DAS-Ø15Ø7-1×MON-88Ø17-3×DAS-59122-7) ( MON89034, B.t. Cry1F maize line 1507, MON88017 及びB.t. Cry34/35Ab1 Event DAS-59122-7 それぞれへの導入遺伝子の組合せを有するものであって当該トウモロコシから分離した後代系統のもの(既に第一種使用規程の承認を受けたものを除く。)を含む。)申請書等の概要
  8. ^ 除草剤グリホサート誘発性雄性不稔、チョウ目及びコウチュウ目害虫抵抗性並びに除草剤アリルオキシアルカノエート系、グルホシネート及びグリホサート耐性トウモロコシ(cry1A.105, 改変cry2Ab2, 改変cry1F, pat, DvSnf7, 改変cry3Bb1, 改変cp4 epsps, cry34Ab1, cry35Ab1, 改変aad-1, Zea mays subsp. mays (L.) Iltis)(MON87427×MON89034×B.t. Cry1F maize line 1507× MON87411×B.t. Cry34/35Ab1 Event DAS-59122-7×DAS40278、OECD UI: MON-87427-7× MON-89Ø34-3×DAS-Ø15Ø7-1×MON-87411-9×DAS-59122-7 ×DAS-4Ø278-9)並びに当該トウモロコシの分離系統に包含される組合せ(既に第一種使用規程の承認を受けたものを除く。)の申請書等の概要
  9. ^ 低飽和脂肪酸・高オレイン酸及び除草剤グリホサート耐性ダイズ(GmFAD2-1A, GmFATB1A, 改変cp4 epsps, Glycine max (L.) Merr.)(MON87705, OECD UI: MON-877Ø5-6)申請書等の概要
  10. ^ 有井 彩, 山根 精一郎「除草剤耐性遺伝子組換え作物の普及と問題点」『雑草研究』51, 263-268(2006年)
  11. ^ a b 白井洋一(独立行政法人農業環境技術研究所「GMO情報:組換え作物のメリットとデメリット」『農業と環境』No.122(2010年6月1日)
  12. ^ 除草剤ブロモキシニル耐性セイヨウナタネ(oxy, Brassica napus L.)(OXY-235, OECD UI: ACS-BNØ11-5)の生物多様性影響評価書の概要
  13. ^ Pest Manag Sci. 2005 Mar;61(3):286-91., "Herbicide resistance in transgenic plants with mammalian P450 monooxygenase genes.", Inui H, Ohkawa H., PMID 15660356
  14. ^ イミダゾリノン系除草剤耐性ダイズ(改変csr1-2, Glycine max (L.) Merr.)(CV127, OECD UI: BPS-CV127-9) 申請書等の概要
  15. ^ J Agric Food Chem. 2000 Nov;48(11):5307-11., "2,4-Dichlorophenoxyacetic acid metabolism in transgenic tolerant cotton (Gossypium hirsutum)"., Laurent F, Debrauwer L, Rathahao E, Scalla R., PMID 11087477
  16. ^ アリルオキシアルカノエート系除草剤耐性トウモロコシ (改変aad-1, Zea mays subsp. mays (L.)Iltis.) (DAS40278, OECD UI:DAS-4Ø278-9) 申請書等の概要
  17. ^ 除草剤ジカンバ耐性ダイズ (改変dmo, Glycine max (L.) Merr.)(MON87708, OECD UI : MON-877Ø8-9)申請書等の概要
  18. ^ 除草剤グリホサート及びイソキサフルトール耐性ダイズ(2mepsps, 改変hppd, Glycine max (L.) Merr.)(FG72,OECD UI: MST-FG072-3)申請書等の概要
  19. ^ 除草剤メソトリオン耐性ダイズ(改変avhppd, Glycine max (L.) Merr.)(SYHT04R, OECD UI: SYN-∅∅∅4R-8) 申請書等の概要
  20. ^ a b 農業と環境 No.102 (2008年10月1日), "GMO情報: 中国のBtワタ、ワタ以外の作物でも防除効果", 白井洋一, 独立行政法人 農業環境技術研究所
  21. ^ 農業と環境 No.87 (2007年7月1日), "GMO情報: バイオ燃料と遺伝子組換え作物 -トウモロコシの連作を可能にした技術", 白井洋一, 独立行政法人 農業環境技術研究所
  22. ^ Journal of Economic Entomology, Volume 106, Number 5, pp. 2151-2159 (2013), "Multi-State Trials of Bt Sweet Corn Varieties for Control of the Corn Earworm (Lepidoptera: Noctuidae)", A. M. Shelton, D. L. Olmstead, E. C. Burkness, W. D. Hutchison, G. Dively, C. Welty, A. N Sparks
  23. ^ Environmental Entomology (35) p. 1439-1452 (2006), “Western Bean Cutworm, Striacosta albicosta (Smith) (Lepidoptera: Noctuidae), as a Potential Pest of Transgenic Cry1Ab Bacillus thuringiensis Corn Hybrids in South Dakota”, Catangui, Michael A.; Berg, Robert K
  24. ^ Nature, Jul 19;487(7407):362-5., (2012), "Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services.", Lu Y, Wu K, Jiang Y, Guo Y, Desneux N., PMID 22722864
  25. ^ 農業と環境 No.117 (2010年1月1日), "GMO情報: Btトウモロコシの害虫抵抗性管理対策 〜緩衝帯ルールと小口栽培制限〜", 白井洋一, 独立行政法人 農業環境技術研究所
  26. ^ 農業と環境 No.96 (2008年4月1日), "GMO情報: Btワタに抵抗性発達 -対策は緩衝帯と複数トキシン品種-", 独立行政法人 農業環境技術研究所
  27. ^ a b c 農業と環境 農業と環境 No.132 (2011年4月1日), "GMO情報: 商業栽培15年、強まる飼料作物の組換え依存", 白井洋一, 独立行政法人 農業環境技術研究所
  28. ^ 農業と環境 No.120 (2010年4月1日), "GMO情報: 不正種子利用に潜む抵抗性発達の危険性", 独立行政法人 農業環境技術研究所
  29. ^ PNAS August 11, 2009 vol. 106 no. 32 p. 13213-13218"Restoring a maize root signal that attracts insect-killing nematodes to control a major pest.", Jörg Degenhardt, Ivan Hiltpold, Tobias G. Köllner, Monika Frey, Alfons Gierl, Jonathan Gershenzon, Bruce E. Hibbard, Mark R. Ellersieck and Ted C. J. Turlings
  30. ^ Plant Biotechnol Rep (2008) 2:13-20, "Production of transgenic potato exhibiting enhanced resistance to fungal infections and herbicide applications", Raham Sher Khan, Rinaldi Sjahril, Ikuo Nakamura, Masahiro Mii
  31. ^ 農業と環境 No.108 (2009年4月1日)、"GMO情報: 一難去ってまた一難 米国ワタ害虫防除作戦の教訓", 白井洋一, 独立行政法人 農業環境技術研究所
  32. ^ Rainbow Papaya
  33. ^ パパイヤリングスポットウイルス抵抗性パパイヤ(改変PRSV CP, uidA, nptII, Carica papaya L.)(55-1, OECD UI: CUH-CP551-8)申請書等の概要
  34. ^ 平成23年2月22日 未承認の遺伝子組換えパパイヤの種子の混入に関する検査の実施について
  35. ^ 平成23年4月21日 未承認の遺伝子組換えパパイヤの種子の混入に関する検査結果について(お知らせ)
  36. ^ 平成23年4月21日 農林水産省 パパイヤ種子の検査結果について
  37. ^ 平成23年2月22日 更新:平成23年2月24日 安全性未審査の遺伝子組換えパパイヤについて
  38. ^ 遺伝子組換えパパイヤ(注)による我が国の生物多様性への影響について(農林水産省及び環境省の共同見解)
  39. ^ Proc Natl Acad Sci U S A. 2009 Nov 10;106(45):19067-71. "Indirect costs of a nontarget pathogen mitigate the direct benefits of a virus-resistant transgene in wild Cucurbita.", Sasu MA, Ferrari MJ, Du D, Winsor JA, Stephenson AG. PMID 19858473
  40. ^ どんとこい
  41. ^ いもち病及び白葉枯病抵抗性イネ(DEF, Oryza sativa L.) (AD41)申請書等の概要, カラシナ由来のディフェンシン。この他にも多数の系統がある。
  42. ^ Mol Theor Appl Genet. 2002 Nov;105(6-7):809-814, "Overexpression of the wasabi defensin gene confers enhanced resistance to blast fungus (Magnaporthe grisea) in transgenic rice.", Kanzaki H, Nirasawa S, Saitoh H, Ito M, Nishihara M, Terauchi R, Nakamura I., PMID 12582903
  43. ^ Patent: JP 2003088379-A 2 25-MAR-2003
  44. ^ 陳述書 (2), 金川 貴博
  45. ^ 金川貴博「ディフェンシン産生の遺伝子組換えイネが高感染性のヒト病原菌を生み出す」『日本の科学者』第41巻第12号、日本科学者会議、2006年12月、648-653頁、CRID 1520572357127645312ISSN 00290335 
  46. ^ accession number: BD285518
  47. ^ アミノ酸配列
  48. ^ FEBS Letters, Volume 484, Issue 1, 27 October 2000, Pages 7-11, "Transgenic expression of cecropin B, an antibacterial peptide from Bombyx mori, confers enhanced resistance to bacterial leaf blight in rice", Arun Sharma, Rashmi Sharma, Morikazu Imamura, Minoru Yamakawa and Hiroaki Machii
  49. ^ Nat Biotechnol. 2000 Nov;18(11):1162-6, "Transgenic plants expressing cationic peptide chimeras exhibit broad-spectrum resistance to phytopathogens.", Osusky M, Zhou G, Osuska L, Hancock RE, Kay WW, Misra S., PMID 11062434
  50. ^ [1]
  51. ^ [2]
  52. ^ a b S-adenosyl-L-methionine
  53. ^ 1-amino cyclopropane-1-carbonic acid
  54. ^ [3]
  55. ^ 2-oxobutyrate
  56. ^ The Plant Cell, Vol. 3, 1187-1 193, November (1991), "Control of Ethylene Synthesis by Expression of a Bacterial Enzyme in Transgenic Tomato Plants",Harry J. Klee, Maria B. Hayford, Keith A. Kretzmer, Gerard F. Barry, and Ganesh M. Kishore, PMID 1821764
  57. ^ [4]
  58. ^ [5]
  59. ^ [6]
  60. ^ Nat Toxins. 1999;7(1):31-8., "Oxidative deamination of hydrolyzed fumonisin B(1) (AP(1)) by cultures of Exophiala spinifera.", Blackwell BA, Gilliam JT, Savard ME, David Miller J, Duvick JP., PMID 10441035
  61. ^ Environ Health Perspect. 2001 May;109 Suppl 2:337-42., "Prospects for reducing fumonisin contamination of maize through genetic modification.", Duvick J. PMID 11359705
  62. ^ ゼアラレノン
  63. ^ Applied and Environmental Microbiology, March 2007, p. 1622-1629, Vol. 73, No. 5, "Reduced Contamination by the Fusarium Mycotoxin Zearalenone in Maize Kernels through Genetic Modification with a Detoxification Gene.", Tomoko Igawa, Naoko Takahashi-Ando, Noriyuki Ochiai, Shuichi Ohsato, Tsutomu Shimizu, Toshiaki Kudo, Isamu Yamaguchi, and Makoto Kimura
  64. ^ 除草剤グリホサート誘発性雄性不稔及び除草剤グリホサート耐性トウモロコシ(改変 cp4 epsps, Zea mays subsp. mays (L.) Iltis)(MON87427, OECD UI: MON-87427-7)申請書等の概要
  65. ^ [7]
  66. ^ 除草剤グルホシネート耐性及び雄性不稔及び稔性回復性セイヨウナタネ(改変bar, barnase, barstar, Brassica napus L.)(MS8RF3, OECD UI: ACS-BNØØ5-8×ACS-BNØØ3-6)の生物多様性影響評価書の概要
  67. ^ 耐熱性α-アミラーゼ産生並びにチョウ目及びコウチュウ目害虫抵抗性並びに除草剤グルホシネート及びグリホサート耐性トウモロコシ (耐熱性α-アミラーゼ産生並びにチョウ目及びコウチュウ目害虫抵抗性並びに除草剤グルホシネート及びグリホサート耐性トウモロコシ(改変amy797E, 改変cry1Ab, cry34Ab1, cry35Ab1, 改変cry3Aa2, cry1F, pat, mEPSPS, Zea mays subsp. mays (L.) Iltis) (3272×Bt11×B.t. Cry34/35Ab1 Event DAS-59122-7×MIR604×B.t. Cry1F maize line 1507×GA21, OECD UI:SYN-E3272-5×SYN-BTØ11-1×DAS-59122-7×SYN-IR6Ø4-5×DAS-Ø15Ø7-1×MON-ØØØ21-9)並びに当該トウモロコシの分離系統に包含される組合せ(既に第一種使用規程の承認を受けたものを除く。)の申請書等の概要
  68. ^ Nature 356, 710 - 713(23 April 1992), "Genetically engineered alteration in the chilling sensitivity of plants", N. Murata, O. Ishizaki-Nishizawa, S. Higashi, H. Hayashi, Y. Tasaka & I. Nishida
  69. ^ Plant and Cell Physiology, 2002, Vol. 43, No. 7 751-758, "An Increase in Unsaturation of Fatty Acids in Phosphatidylglycerol from Leaves Improves the Rates of Photosynthesis and Growth at Low Temperatures in Transgenic Rice Seedlings", Tohru Ariizumi, Sachie Kishitani, Rie Inatsugi, Ikuo Nishida, Norio Murata and Kinya Toriyama, PMID 12154137
  70. ^ "OsSDIR1 overexpression greatly improves drought tolerance in transgenic rice.", Gao T, Wu Y, Zhang Y, Liu L, Ning Y, Wang D, Tong H, Chen S, Chu C, Xie Q., Plant Mol Biol. 2011 May;76(1-2):145-56., PMID 21499841
  71. ^ 乾燥耐性トウモロコシ(改変cspB, Zea mays subsp. mays (L.) Iltis)(MON87460, OECD UI: MON-8746Ø-4)申請書等の概要
  72. ^ オリジナルのcspBの塩基配列オリジナルのCspBのアミノ酸配列
  73. ^ betaine aldehyde
  74. ^ Plant Molecular Biology, July 2014, Vol. 85, p. 429-441, "Transgenic Arabidopsis expressing osmolyte glycine betaine synthesizing enzymes from halophilic methanogen promote tolerance to drought and salt stress",Shu-Jung Lai, Mei-Chin Lai, Ren-Jye Lee, Yu-Hsuan Chen, Hungchen Emilie Yen
  75. ^ a b Plant Physiol. 2000 Apr;122(4):1129-36., "Removal of feedback inhibition of delta(1)-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress.", Hong Z, Lakkineni K, Zhang Z, Verma DP., PMID 10759508
  76. ^ Plant Mol Biol. 2007 Jul;64(4):371-86. Epub 2007 Apr 24., "Improved drought tolerance without undesired side effects in transgenic plants producing trehalose.", Karim S, Aronsson H, Ericson H, Pirhonen M, Leyman B, Welin B, Mäntylä E, Palva ET, Van Dijck P, Holmström KO., PMID 17453154
  77. ^ トレハロース-6-リン酸
  78. ^ Plant Biotechnol Rep (2007) 1:49-55, "Enhancement of salt tolerance in transgenic rice expressing an Escherichia coli catalase gene, katE", Kenji Nagamiya, Tsuyoshi Motohashi, Kimiko Nakao, Shamsul Haque Prodhan, Eriko Hattori, Sakiko Hirose, Kenjiro Ozawa, Yasunobu Ohkawa, Tetsuko Takabe, Teruhiro Takabe, Atsushi Komamine
  79. ^ Plant Biotechnol Rep. (2008) 2:41-46, "Overexpression of the Escherichia coli catalase gene, katE, enhances tolerance to salinity stress in the transgenic indica rice cultivar, BR5", Teppei Moriwaki, Yujirou Yamamoto, Takehiko Aida, Tatsuya Funahashi, Toshiyuki Shishido, Masataka Asada, Shamusul Haque Prodhan, Atsushi Komamine, Tsuyoshi Motohashi
  80. ^ nicotianamine
  81. ^ 3"-deamino-3"-oxonicotianamine
  82. ^ 2'-deoxymugineic acid
  83. ^ Nat Biotechnol. 2001 May;19(5):466-9., "Enhanced tolerance of rice to low iron availability in alkaline soils using barley nicotianamine aminotransferase genes.", Takahashi M, Nakanishi H, Kawasaki S, Nishizawa NK, Mori S., PMID 11329018
  84. ^ 鉄欠乏耐性イネ(HvNAS1, Oryza sativa L.) (gHvNAS1-1)申請書等の概要
  85. ^ 鉄欠乏耐性イネ(HvNAAT-A, HvNAAT-B, Oryza sativa L.) (gHvNAAT1)申請書等の概要
  86. ^ 鉄欠乏耐性イネ(HvIDS3, Oryza sativa L.) (gHvIDS3-1)申請書等の概要
  87. ^ Plant Cell. 2006 Aug;18(8):2035-50., "Functional replacement of ferredoxin by a cyanobacterial flavodoxin in tobacco confers broad-range stress tolerance.", Tognetti VB, Palatnik JF, Fillat MF, Melzer M, Hajirezaei MR, Valle EM, Carrillo N., PMID 16829589, PMC 1533984.
  88. ^ Trends Biotechnol. 2008 Oct;26(10):531-7., "Combating stress with flavodoxin: a promising route for crop improvement.", Zurbriggen MD, Tognetti VB, Fillat MF, Hajirezaei MR, Valle EM, Carrillo N., PMID 18706721.
  89. ^ Plant J. 2011 Mar;65(6):922-35., "Cyanobacterial flavodoxin complements ferredoxin deficiency in knocked-down transgenic tobacco plants.", Blanco NE, Ceccoli RD, Segretin ME, Poli HO, Voss I, Melzer M, Bravo-Almonacid FF, Scheibe R, Hajirezaei MR, Carrillo N., PMID 21205028.
  90. ^ 情報:農業と環境 No.97 (2008年5月1日), "GMO情報: 除草剤耐性品種でなぜ収量が増えるのか?", 独立行政法人 農業環境技術研究所
  91. ^ Planta, vol. 222, No. 3, p. 484-493, October 2005, "Expression of hepatitis B surface antigen in transgenic banana plants.", Kumar GB, Ganapathi TR, Revathi CJ, Srinivas L, Bapat VA., PMID 15918027
  92. ^ stearoyl-CoA
  93. ^ oleoyl-CoA
  94. ^ Δ9-desaturase
  95. ^ 高オレイン酸ダイズ(GmFad2-1, Glycine max (L.) Merr.)(260-05, OECD UI :DD- Ø26ØØ5-3) 申請書等の概要
  96. ^ 低飽和脂肪酸・高オレイン酸及び除草剤グリホサート耐性ダイズ(GmFAD2-1A, GmFATB1A, 改変cp4 epsps, Glycine max (L.) Merr.)(MON87705, OECD UI: MON-877Ø5-6)申請書等の概要
  97. ^ linoleoyl-CoA
  98. ^ γ-linolenoyl-CoA
  99. ^ stearidonoyl-CoA
  100. ^ α-linolenoyl-CoA
  101. ^ ステアリドン酸産生及び除草剤グリホサート耐性ダイズ(改変Pj.D6D, 改変Nc.Fad3, 改変cp4 epsps, Glycine max (L.) Merr.)(MON87769×MON89788, OECD UI:MON-87769-7×MON-89788-1)申請書等の概要
  102. ^ 生物多様性影響評価書の概要
  103. ^ 高リシン(lysine)トウモロコシ(cordapA, Zea mays subsp. mays (L.) Iltis)(LY038, OECD UI: REN-ØØØ38-3)の生物多様性影響評価書の概要
  104. ^ 国際アグリバイオ事業団(ISAAA)アグリバイオ最新情報【2012年8月31日】”. 日経バイオテクオンライン (2012年9月13日). 2018年4月13日閲覧。
  105. ^ a b c Paine, Jacqueline A.; Shipton, Catherine A.; Chaggar, Sunandha; Howells, Rhian M.; Kennedy, Mike J.; Vernon, Gareth; Wright, Susan Y.; Hinchliffe, Edward et al. (2005-04). “Improving the nutritional value of Golden Rice through increased pro-vitamin A content” (英語). Nature Biotechnology 23 (4): 482–487. doi:10.1038/nbt1082. ISSN 1546-1696. https://www.nature.com/articles/nbt1082. 
  106. ^ a b ゴールデンライス”. 光合成事典. 日本光合成学会. 2023年3月5日閲覧。
  107. ^ Hirschberg, Joseph (2001-06-01). “Carotenoid biosynthesis in flowering plants” (英語). Current Opinion in Plant Biology 4 (3): 210–218. doi:10.1016/S1369-5266(00)00163-1. ISSN 1369-5266. https://www.sciencedirect.com/science/article/pii/S1369526600001631. 
  108. ^ The science behind Golden Rice”. www.goldenrice.org. 2023年3月5日閲覧。
  109. ^ Patents for Humanity Awards Ceremony at the White House”. IP Watchdog Blog (2015年4月20日). 2020年2月24日閲覧。
  110. ^ US FDA approves GMO Golden Rice as safe to eat | Genetic Literacy Project” (英語). geneticliteracyproject.org. 2018年5月30日閲覧。
  111. ^ GM米 商業栽培認可 フィリピンで世界初」『日本農業新聞』日本農業新聞、2021年8月1日。2023年3月6日閲覧。
  112. ^ PLoS One. 2007 Apr 4;2(4):e350., "Metabolic engineering of potato carotenoid content through tuber-specific overexpression of a bacterial mini-pathway.", Diretto G, Al-Babili S, Tavazza R, Papacchioli V, Beyer P, Giuliano G., PMID 17406674, PMC 1831493.
  113. ^ BMC Plant Biol. 2006 Jun 26;6:13., "Metabolic engineering of potato tuber carotenoids through tuber-specific silencing of lycopene epsilon cyclase.", Diretto G, Tavazza R, Welsch R, Pizzichini D, Mourgues F, Papacchioli V, Beyer P, Giuliano G., PMID 16800876, PMC 1570464.
  114. ^ BMC Plant Biol. 2007 Mar 2;7:11, "Silencing of beta-carotene hydroxylase increases total carotenoid and beta-carotene levels in potato tubers.", Diretto G, Welsch R, Tavazza R, Mourgues F, Pizzichini D, Beyer P, Giuliano G., PMID 17335571, PMC 1828156.
  115. ^ Plant Cell Rep. 2007 Jan;26(1):61-70., "Increased alpha-tocopherol content in soybean seed overexpressing the Perilla frutescens gamma-tocopherol methyltransferase gene.", Tavva VS, Kim YH, Kagan IA, Dinkins RD, Kim KH, Collins GB., PMID 16909228
  116. ^ Nature Biotechnology 26, 1301 - 1308 (2008), "Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors", Eugenio Butelli, Lucilla Titta, Marco Giorgio, Hans-Peter Mock, Andrea Matros, Silke Peterek, Elio G W M Schijlen, Robert D Hall, Arnaud G Bovy, Jie Luo & Cathie Martin
  117. ^ 日本学術振興会植物バイオ第160委員会 (2009-03). 救え!世界の食料危機: ここまできた遺伝子組換え作物. 化学同人. ISBN 9784759811728. https://books.google.co.jp/books/about/%25E6%2595%2591%25E3%2581%2588_%25E4%25B8%2596%25E7%2595%258C%25E3%2581%25AE%25E9%25A3%259F%25E6%2596%2599%25E5%258D%25B1%25E6%25A9%259F.html?id=_Ep8-wztmlgC&printsec=frontcover&source=kp_read_button&redir_esc=y#v=onepage&q&f=false 
  118. ^ H2
  119. ^ Nat Biotechnol. 1999 Mar;17(3):282-6., "Iron fortification of rice seed by the soybean ferritin gene.", Goto F, Yoshihara T, Shigemoto N, Toki S, Takaiwa F., PMID 10096297
  120. ^ Planta. 2005 Oct;222(2):225-33. Epub 2005 Apr 9., "Iron accumulation does not parallel the high expression level of ferritin in transgenic rice seeds.", Qu le Q, Yoshihara T, Ooyama A, Goto F, Takaiwa F., PMID 15821927
  121. ^ 「鉄分3倍含むコメ開発、貧血解消にも効果期待」, 2010年1月14日, 読売新聞
  122. ^ 「鉄分3倍のイネ開発 東大など 遺伝子組み換えで」, 米山正寛, 2010年2月16日, 科学面, 朝日新聞
  123. ^ Transgenic Res. 2008 Aug;17(4):633-43. Epub 2007 Oct 12., "Transgenic maize plants expressing a fungal phytase gene.", Chen R, Xue G, Chen P, Yao B, Yang W, Ma Q, Fan Y, Zhao Z, Tarczynski MC, Shi J., PMID 17932782
  124. ^ Poult Sci. 2008 Oct;87(10):2015-22., "Corn expressing an Escherichia coli-derived phytase gene: comparative evaluation study in broiler chicks.", Nyannor EK, Adeola O., PMID 18809864
  125. ^ Poult Sci. 2009 Jul;88(7):1413-20., "Corn expressing an Escherichia coli-derived phytase gene: residual phytase activity and microstructure of digesta in broiler chicks.", Nyannor EK, Bedford MR, Adeola O., PMID 19531712
  126. ^ Plant Mol Biol. 2005 Dec;59(6):869-80., "Endosperm-specific co-expression of recombinant soybean ferritin and Aspergillus phytase in maize results in significant increases in the levels of bioavailable iron.", Drakakaki G, Marcel S, Glahn RP, Lund EK, Pariagh S, Fischer R, Christou P, Stoger E., PMID 16307363
  127. ^ 農業と環境 No.121 (2010年5月1日), "GMO情報: ヨーロッパのポテト―商業栽培と試験栽培の承認", 白井洋一, 独立行政法人 農業環境技術研究所
  128. ^ Plant Physiol. 1998 April; 116(4): 1219-1225., "Cyanogenesis in Cassava The Role of Hydroxynitrile Lyase in Root Cyanide Production", Wanda L.B. White, Diana I. Arias-Garzon, Jennifer M. McMahon, and Richard T. Sayre, PMC 35028, open access
  129. ^ PLoS ONE 6(7), (2011): e21996. doi:10.1371/journal.pone.0021996, "Overexpression of Hydroxynitrile Lyase in Cassava Roots Elevates Protein and Free Amino Acids while Reducing Residual Cyanogen Levels.", Narayanan NN, Ihemere U, Ellery C, Sayre RT, open access
  130. ^ Proc Natl Acad Sci U S A. 2006 Nov 28;103(48):18054-9, "Engineering cottonseed for use in human nutrition by tissue-specific reduction of toxic gossypol.", Sunilkumar G, Campbell LM, Puckhaber L, Stipanovic RD, Rathore KS., PMID 17110445, PMC 1838705.
  131. ^ Plant Biotechnol J. 2012 Feb;10(2):174-83, "Ultra-low gossypol cottonseed: generational stability of the seed-specific, RNAi-mediated phenotype and resumption of terpenoid profile following seed germination.", Rathore KS, Sundaram S, Sunilkumar G, Campbell LM, Puckhaber L, Marcel S, Palle SR, Stipanovic RD, Wedegaertner TC., PMID 21902797.
  132. ^ Plant Biotechnol J. 2008 Oct;6(8):843-53., "Low-acrylamide French fries and potato chips.", Rommens CM, Yan H, Swords K, Richael C, Ye J., PMID 18662372, PMC 2607532
  133. ^ a b Plant Biotechnol J. 2012 10(8):913-924, "Tuber-specific silencing of asparagine synthetase-1 reduces the acrylamide-forming potential of potatoes grown in the field without affecting tuber shape and yield.", Chawla R, Shakya R, Rommens CM, abstract
  134. ^ Official Journal of the European Communities 17.4.2001, "DIRECTIVE 2001/18/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 12 March 2001 on the deliberate release into the environment of genetically modified organisms and repealing Council Directive 90/220/EEC
  135. ^ Plant Biotechnology Journal, Vol. 11, p. 516-525, May 2013, "A novel dominant selectable system for the selection of transgenic plants under in vitro and greenhouse conditions based on phosphite metabolism", Damar L. Lopez-Arredondo and Luis Herrera-Estrella
  136. ^ The Plant Journal (2007) 52, p. 157-166, "Molecular breeding of a novel herbicide-tolerant rice by gene targeting.", Endo M, Osakabe K, Ono K, Handa H, Shimizu T, Toki S., PMID 17883686
  137. ^ Plant Physiology, June 2007, Vol. 144, pp. 846-856, "Gene targeting by homologous recombination as a biotechnological tool for rice functional genomics.", Terada R, Johzuka-Hisatomi Y, Saitoh M, Asao H, Iida S., PMID 17449652
  138. ^ Nature, 2009 May 21;459(7245):442-5, "High-frequency modification of plant genes using engineered zinc-finger nucleases.", Townsend JA, Wright DA, Winfrey RJ, Fu F, Maeder ML, Joung JK, Voytas DF, PMID 19404258, PMC 2743854.
  139. ^ Nature. 2009 May 21;459(7245):437-41, "Precise genome modification in the crop species Zea mays using zinc-finger nucleases.", Shukla VK, Doyon Y, Miller JC, DeKelver RC, Moehle EA, Worden SE, Mitchell JC, Arnold NL, Gopalan S, Meng X, Choi VM, Rock JM, Wu YY, Katibah GE, Zhifang G, McCaskill D, Simpson MA, Blakeslee B, Greenwalt SA, Butler HJ, Hinkley SJ, Zhang L, Rebar EJ, Gregory PD, Urnov FD, PMID 19404259
  140. ^ Methods Mol Biol, 2012;847:391-7, "Targeting DNA to a previously integrated transgenic locus using zinc finger nucleases.", Strange TL, Petolino JF, PMID 22351024
  141. ^ Plant J. 2000 Oct;24(2):265-73., "Technical advance: An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants.", Zuo J, Niu QW, Chua NH., PMID 11069700
  142. ^ Nat Biotechnol. 2001 Feb;19(2):157-61., "Chemical-regulated, site-specific DNA excision in transgenic plants.", Zuo J, Niu QW, Møller SG, Chua NH., PMID 11175731
  143. ^ Methods Mol Biol. 2006;323:329-42., "Applications of chemical-inducible expression systems in functional genomics and biotechnology.", Zuo J, Hare PD, Chua NH., PMID 16739588
  144. ^ Plant J. 1999 Jul;19(1):87-95., "Technical advance: transcriptional activator TGV mediates dexamethasone-inducible and tetracycline-inactivatable gene expression ", Bohner S, Lenk I I, Rieping M, Herold M, Gatz C., PMID 10417730
  145. ^ Mol Gen Genet. 2001 Feb;264(6):860-70., "Characterisation of novel target promoters for the dexamethasone-inducible/tetracycline-repressible regulator TGV using luciferase and isopentenyl transferase as sensitive reporter genes.", Böhner S, Gatz C., PMID 11254134
  146. ^ Plant Biotechnol J. 2007 Mar;5(2):263-274., "'GM-gene-deletor': fused loxP-FRT recognition sequences dramatically improve the efficiency of FLP or CRE recombinase on transgene excision from pollen and seed of tobacco plants.", Luo K, Duan H, Zhao D, Zheng X, Deng W, Chen Y, Stewart CN Jr, McAvoy R, Jiang X, Wu Y, He A, Pei Y, Li Y., PMID 17309681
  147. ^ 5’-CGTAAATTATAAATCTTAAATATCAAAGTT ACATGTTATATATGGTTAAAAATCATTTAA ATGTTACATAGTTTTAAGAACTTTTATATT GTAACTTTAGGGTATACTCTAAAATAACA-3’
  148. ^ Plant Mol Biol. 2011 Apr;75(6):621-31. Epub 2011 Feb 2, "Transgene excision in pollen using a codon optimized serine resolvase CinH-RS2 site-specific recombination system.", Moon HS, Abercrombie LL, Eda S, Blanvillain R, Thomson JG, Ow DW, Stewart CN Jr., PMID 21359553
  149. ^ Plant Mol Biol. 2010 Apr;72(6):673-87., "Transgene excision from wheat chromosomes by phage phiC31 integrase.",Kempe K, Rubtsova M, Berger C, Kumlehn J, Schollmeier C, Gils M., PMID 20127141
  150. ^ 日本での利用状況”. バイテク情報普及会. 2021年3月25日閲覧。
  151. ^ 遺伝子組換え食品(種子植物)の安全性評価基準
  152. ^ 遺伝子組換え飼料及び飼料添加物の安全性評価の考え方
  153. ^ a b c d 『遺伝子組み換え作物、事実上の勝利 安全性への懸念をよそに栽培農家は世界中で急増』2007年12月17日付配信 日経ビジネスオンライン
  154. ^ 農林水産政策研究所レビューNo.21(2006年10月16日), 巻頭言, "BSE・大豆・アマゾン", 石 弘之, 農林水産政策研究所レビュー
  155. ^ a b c 『“遺伝子組み換え作物”中国進む技術開発 コメ商業栽培もう一歩』2007年10月29日付配信 産経新聞
  156. ^ 平成21年耕地面積(7月15日現在)
  157. ^ Recent Trends in GE Adoption, Adoption of Genetically Engineered Crops in the U.S., Last updated: Monday, July 14, 2014
  158. ^ GMO Crops, Animal Food, and Beyond”. U.S.FOOD & DRUGS ADMINISTRATION(アメリカ食品医薬品局). 2021年3月29日閲覧。
  159. ^ a b c d e f g Genetically modified plants: Global Cultivation Area Soybean
  160. ^ a b c d e Genetically modified plants: Global Cultivation Area Maize
  161. ^ a b c d e f Genetically modified plants: Global Cultivation Area Cotton
  162. ^ Acreage 2008
  163. ^ Acreage 2009
  164. ^ Acreage 2010
  165. ^ Acreage 2011
  166. ^ Acreage 2012
  167. ^ Acreage 2013
  168. ^ Acreage 2014
  169. ^ Genetically modified plants: Global Cultivation Area Rapeseed
  170. ^ ブラジルにおける遺伝子組換え(GM)作物の栽培許可をめぐる経緯, 犬塚 明伸、横打 友恵、月報「畜産の情報」(海外編), 2005年10月, 独立行政法人 農畜産業振興機構
  171. ^ ISAAA Series of Biotech Crop Profiles: Bt Cotton in India: A Country Profile, Bhagirath Choudhary and Kadambini Gaur著, July 2010, ISBN 978-1-89245646-5.
  172. ^ Adoptation and impact of Bt cotton in India, 2002 to 2010, Bhagirath Choudhary and Kadambini Gaur著
  173. ^ Socio-Economic and Farm Level Impact of Bt Cotton in India, Bhagirath Choudhary and Kadambini Gaur著
  174. ^ pnas.1203647109, "Economic impacts and impact dynamics of Bt (Bacillus thuringiensis) cotton in India", Jonas Kathage and Matin Qaim, PNAS, July 2, 2012
  175. ^ Genetically modified cotton gets high marks in India, Engineered plants increased yields and profits relative to conventional varieties, Gayathri Vaidyanathan, Nature | News, 03 July 2012
  176. ^ 北海道遺伝子組換え作物の栽培等による交雑等の防止に関する条例, 平成17年3月31日北海道条例第10号, 改正平成21年3月31日北海道条例第15号
  177. ^ 農林水産物輸出入状況2008年(平成20年)確定値平成21年4月10日 平成21年10月1日訂正 農林水産省 国際部国際政策課
  178. ^ 遺伝子組換え作物 -世界の動向と今後の日本の展望-, 三石誠司, 財団法人 報農会, 掲載誌名:植物ハイビジョン-2008 -遺伝子組換え作物の現状と課題-, p.49-57
  179. ^ 「講師の三石誠司・宮城大学教授は、大豆やトウモロコシなど輸入穀物の半分を遺伝子組み換え農産物が占めている現状を解説。」 遺伝子組み換えに賛否 新潟で農水省農産物シンポ 新潟日報2009年9月17日
  180. ^ 日本での利用状況”. バイテク情報普及会. 2021年3月31日閲覧。
  181. ^ ”遺伝子組換え作物の社会的便益の評価に関する研究-遺伝子組換え作物の日本経済への貢献度の計測-”、バイテク情報普及会研究報告書、東京大学大学院農学生命科学研究科、本間正義、齋藤勝宏、2016年9月30日、2021年3月31日閲覧。 https://cbijapan.com/wp-content/themes/cbijapan/pdf/2017031401CBIJ.pdf
  182. ^ 日本農林規格等に関する法律(JAS法)
  183. ^ 遺伝子組換えに関する表示に係る加工食品品質表示基準第7条第1項及び生鮮食品品質表示基準第7条第1項の規定に基づく農林水産大臣の定める基準, (平成12年3月31日 農林水産省告示第517号、最終改正平成23年8月31日消費者庁告示第9号)
  184. ^ 食品衛生法
  185. ^ a b c d e f g h i j k l 食品表示に関する共通Q&A(第3集:遺伝子組換え食品に関する表示について)
  186. ^ 酒類における有機等の表示基準を定める件, 平成12年12月26日 国税庁告示第7号, 改正 平成20年7月 国税庁告示第22号 、平成27年10月国税庁告示第19号、令和元年6月国税庁告示第7号
  187. ^ 食品衛生法第19条第1項の規定に基づく表示の基準に関する内閣府令等の施行について, (消食表第370号 平成23年8月31日)
  188. ^ a b 大豆加工品の「国産大豆使用」表示等に関する特別調査の結果について
  189. ^ バルク輸送非GMO流通マニュアル(とうもろこし・大豆)
  190. ^ バルク輸送非GMO流通マニュアル(ばれいしょ)
  191. ^ 科学的手法を用いて実施した食品の品質表示実施状況調査の結果について(平成21年度), 平成22年12月28日 独立行政法人 農林水産消費安全技術センター
  192. ^ Regulation No 1830/2003 concerning the traceability and labelling of genetically modified organisms and the traceability of food and feed products produced from genetically modified organisms
  193. ^ Questions and answers on the regulation of GMOs in the European Union (October 2005)
  194. ^ 遺伝子組換え樹木/遺伝子組換え作物をめぐる諸外国の政策動向、第6章 EUにおける遺伝子組換え食品等の表示制度及び実施状況について 大臣官房情報評価課 平形和世、平成21年3月 農林水産政策研究所
  195. ^ 有機農産物の日本農林規格制定平成12年1月20日農林水産省告示第59号 一部改正平成15年11月18日農林水産省告示第1884号 全部改正平成17年10月27日農林水産省告示第1605号 一部改正平成21年8月27日農林水産省告示第1180号 一部改正平成24年3月28日農林水産省告示第833号 一部改正平成27年12月3日農林水産省告示第2597号 一部改正平成28年2月24日農林水産省告示第489号 最終改正平成29年3月27日農林水産省告示第443号
  196. ^ 有機農産物及び有機加工食品のJAS規格のQ&A平成28年7月 農林水産省 食料産業局 食品製造課
  197. ^ 農業環境技術研究所資料 第27号, "欧州農業における遺伝子組換え作物、一般栽培作物および有機栽培作物の共存のためのシナリオ", 欧州委員会共同研究センター予測技術研究所 著, 廉澤 敏弘 中谷 敬子 訳, ISSN 0912-7542, 平成15年9月, 農業環境技術研究所
  198. ^ NEDO海外レポート NO.1047, 2009.7.01, "【ライフサイエンス・バイオテクノロジー特集】 遺伝子組換え作物の栽培方法に関する規制レポート(EU)", 編集:久我 健二郎、原訳:吉野 晴美, NEDO
  199. ^ Official Journal of the European Union 22.7.2010, "COMMISSION RECOMMENDATION of 13 July 2010 on guidelines for the development of national co-existence measures to avoid the unintended presence of GMOs in conventional and organic crops"
  200. ^ Coexistence in the countries of the EU: A European patchwork, GMO Safety.eu
  201. ^ EU report on national coexistence measures: Coexistence to continue to be regulated by member states for the time being, GMO Safety.eu
  202. ^ 遺伝子組換え樹木/遺伝子組換え作物をめぐる諸外国の政策動向、第2部 遺伝子組換え作物に関する諸動向、第4章 欧州委員会における遺伝子組換え作物をめぐる共存政策の動向、茨城大学農学部 立川雅司、平成21年3月 農林水産政策研究所
  203. ^ 海外駐在員情報、欧州委、遺伝子組換作物の栽培を許可、制限または禁止できる権限を加盟国に付与する規則を提案、ブリュッセル駐在員 前間 聡 平成22年7月16日発、独立行政法人 農畜産業振興機構
  204. ^ a b 平成26年度 環境省請負業務 遺伝子組換え生物による影響監視調査 報告書
  205. ^ 「平成27年度遺伝子組換え植物実態調査」の結果について
  206. ^ 「ほ場で遺伝子組換えダイズとツルマメが交雑する可能性は低い」, リサーチプロジェクト名:遺伝子組換え生物生態影響リサーチプロジェクト, 研究担当者:生物多様性研究領域 吉村泰幸、水口亜樹、松尾和人, 平成18年度 研究成果情報(第23集), 農業環境技術研究所
  207. ^ Weed Biology and Management, March 2009; 9(1):93-6, "Flowering phenologies and natural hybridization of genetically modified and wild soybeans under field conditions", AKI MIZUGUTI, YASUYUKI YOSHIMURA and KAZUHITO MATSUO, DOI: 10.1111/j.1445-6664.2008.00324.x
  208. ^ Nature 399, 214 (1999), "Transgenic pollen harms monarch larvae", JOHN E. LOSEY, LINDA S. RAYOR & MAUREEN E. CARTER, PMID 10353241
  209. ^ p. 818, 左側下から18行目から4行目まで, chapter 38 Angiosperm Reproduction and Biotechnology, BIOLOGY Eighth Edition, Neil A. Campbell, Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson, Pearson Education, Inc., (2008), ISBN 978-0-321-53616-7/0-321-53616-9
  210. ^ 松尾和人, 吉村泰幸「遺伝子組み換え作物の栽培国および輸入国における雑草問題」『日本作物学会紀事』第84巻、2015年、1頁。 
  211. ^ Vencill, W.K., R.L. Nichols, T.M. Webster, J.K. Soteres, C. Mallory-Smith, N.R. Burgos, W.G. Johnson and M.R. McClelland (2012). “Herbicide Resistance: Toward an Understanding of Resistance Development and the Impact of Herbicide-Resistant Crops”. WSAA Weed Science Special Issue:2-30: 15. https://www.cambridge.org/core/services/aop-cambridge-core/content/view/1A9433257A97A1C8416B7AFB3A8BC61A/S004317450002186Xa.pdf/herbicide_resistance_toward_an_understanding_of_resistance_development_and_the_impact_of_herbicideresistant_crops.pdf#page=15. 
  212. ^ Livingston, M., J. Fernandez-Cornejo, J. Unger, C. Osteen, D. Schimmelpfennig, T. Park and D. Lambert (2015). “The Economics of Glyphosate Resistance Management in Corn and Soybean Production”. Economic Research Report U.S. Department of Agriculture No. ERR-184: 7. https://www.ers.usda.gov/webdocs/publications/45354/52761_err184.pdf?v=42207#page=7. 
  213. ^ CENTER FOR FOOD SAFETY,Monsant vs. U.S. Farmers monsanto, 2007
  214. ^ Evidence of the Magnitude and Consequences of the Roundup Ready Soybean Yield Drag from University-Based Varietal Trials in 1998, Dr. Charles Benbrook, Benbrook Consulting Services, Sandpoint, Idaho
  215. ^ A Meta-Analysis of the Impacts of Genetically Modified Crops, Wilhelm Klümper and Matin Qaim, PLOS ONE, Published: November 03, 2014, DOI: 10.1371/journal.pone.0111629
  216. ^ Table S3. Weighted mean impacts of GM crop adoption.
  217. ^ p.181, 遺伝子組換え食品―どこが心配なのですか?, 著者 アラン マキュアン(Alan McHaghen), 翻訳 渡辺 正 および 久村 典子, 出版社 丸善, 2002年7月 初版, ISBN 978-4621070635
  218. ^ 農業と環境 No.133 (2011年5月1日), "GMO情報: 進まぬ新規形質作物の実用化、原因は消費者意識か審査のハードルか", 白井洋一、独立行政法人 農業環境技術研究所
  219. ^ 農業と環境 No.118 (2010年2月1日), "GMO情報: ウイルス病抵抗性パパイヤ、承認までの長い道のり", 白井洋一、独立行政法人 農業環境技術研究所
  220. ^ a b c d e 伊藤成朗「多国籍種苗企業の国際展開 (特集 発展途上国と知的財産権--経済学的アプローチ)」『アジア経済』第45巻第11/12号、日本貿易振興機構アジア経済研究所、2004年11月、49-79頁、ISSN 00022942NAID 120000808691 
  221. ^ 週報「海外駐在員情報」平成17年4月12日号(通巻668号), "アルゼンチンにおけるGM大豆の特許料支払い問題", 犬塚 明伸、独立行政法人 農畜産業振興機構
  222. ^ 週報「海外駐在員情報」平成17年8月2日号(通巻683号), "RR大豆の特許料支払い問題、再燃(アルゼンチン)", 犬塚 明伸、独立行政法人 農畜産業振興機構
  223. ^ Docket: T-1593-98, Neutral Citation: 2001 FCT 256, MONSANTO CANADA INC. and MONSANTO COMPANY Plaintiffs and PERCY SCHMEISER and SCHMEISER ENTERPRISES LTD. Defendants, カナダ連邦裁判所判決文
  224. ^ Monsanto Canada Inc. v. Schmeiser (C.A.) (2003)2 F.C. 165, カナダ連邦控訴裁判所判決文
  225. ^ Monsanto Canada Inc. v. Schmeiser, (2004) 1 S.C.R. 902, 2004 SCC 34, カナダ最高裁判所判決文
  226. ^ "In India, the introduction of GMO Bt cotton seed increased costs by 8000%, locked farmers in debt ,and pushed them to suicide. More than 270000 Indian farmers have committed suicide due to debt created by high cost seeds and chemicals. And most suicides are concentrated in the cotton belt.", Prop 37-vital for Food Democracy
  227. ^ Nature | News Feature, Vol. 497, 02 May (2013), Natasha Gilbert, GM cotton has driven farmers to suicide: False, Case studies: A hard look at GM crops
  228. ^ ビタミンA欠乏症 目標 ビタミンA欠乏症を撲滅する。, UNICEF
  229. ^ "An estimated 250 million preschool children are vitamin A deficient and it is likely that in vitamin A deficient areas a substantial proportion of pregnant women is vitamin A deficient.","An estimated 250 000 to 500 000 vitamin A-deficient children become blind every year, half of them dying within 12 months of losing their sight.", A few salient facts
  230. ^ Global prevalance of vitamin A deficiency in populations at risk 1995-2005, WHO Global Database on Vitamin A Deficiency, Authors: World Health Organization, Number of pages: 55, Publication date: 2009, Languages: English, ISBN 978-92-4-159801-9
  231. ^ golden Rice Project
  232. ^ p. 52, 4-10行, 「ゆっくりノートブック1 SLOW FOOD, IT'S ABOUT TIME! そろそろスローフード 〜今、何をどう食べるのか?」, 島村菜津・辻 信一 共著, 発行所 株式会社 大月書店, 2008年6月20日 第1刷発行, ISBN 978-4-272-32031-8-C0336
  233. ^ 第2章 五訂増補日本食品標準成分表(本表), 果実類, リンゴ(生)の可食部100 g当たりレチノール当量 2 μg
  234. ^ 国別WID情報整備調査、インド India : Country WID Profile、平成10年3月 国際協力事業団 企画部、p. 6の下から2行からp. 7の1行目「世帯の経済状態により栄養を摂取できる機会が異なり、家庭内では性別により栄養の配分に差異が生じている。女性は貧困家庭ほど栄養状況が悪い。インドで特に不足している栄養素は、ヨウ素とビタミン A である。」
  235. ^ [8][9][10]
  236. ^ 第2章 五訂増補日本食品標準成分表(本表), 穀類
  237. ^ 名和義彦・大谷俊郎:有色素米の色素特性,食品工業,11月30日号,28-33(1991)
  238. ^ J Med Food. 2001 Winter;4(4):211-218., "Antioxidant Activity of Anthocyanin Extract from Purple Black Rice.", Ichikawa H, Ichiyanagi T, Xu B, Yoshii Y, Nakajima M, Konishi T., PMID 12639403
  239. ^ 農業と環境 No. 88(2007.8), GMO情報: ビタミンA強化米 ゴールデンライスの開発阻害要因, 独立行政法人農業環境技術研究所
  240. ^ Regulated to blindness and death
  241. ^ HarvestPlus Technical Monograph 4. (2005), Analyzing the health benefits of biofortified staple crops by means of the disability-adjusted life years approach: a handbook focusing on iron, zinc and vitamin A., Alexander J. Stein, J.V. Meenakshi, Matin Qaim, Penelope Nestel, H.P.S. Sachdev and Zulfiqar A. Bhutta
  242. ^ Scientific American, March 15, 2014, "Golden Rice Opponents Should Be Held Accountable for Health Problems Linked to Vitamin A Deficiency", David Ropeik
  243. ^ Food Chem Toxicol. 2008 Mar;46 Suppl 1:S2-70. Epub 2008 Feb 13., "Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.", EFSA GMO Panel Working Group on Animal Feeding Trials., PMID 18328408
  244. ^ Regulatory Toxicology and Pharmacology 32, p. 156-173 (2000), "Safety and Advantages of Bacillus thuringiensis-Protected Plants to Control Insect Pests", Fred S. Betz, Bruce G. Hammond, and Roy L. Fuchs, PMID 11067772
  245. ^ NEJM., Volume 334, p.688-692, (1996),NEJM., "Identification of a Brazil-Nut Allergen in Transgenic Soybeans", Julie A. Nordlee, Steve L. Taylor, Jeffrey A. Townsend, Laurie A. Thomas, and Robert K. Bush
  246. ^ 農業と環境 No.98 (2008年6月1日)、"GMO情報: スターリンクの悲劇 〜8年後も残るマイナスイメージ〜", 独立行政法人 農業環境技術研究所
  247. ^ 遺伝子組換え植物の光と影 Ⅱ、監修者 佐野 浩、出版社 学会出版センター、2003年6月20日 初版、ISBN 4-7622-3014-6
  248. ^ Food and Chemical Toxicology 2004;42:p. 29-36, "A generational study of glyphosate-tolerant soybeans on mouse fetal, postnatal, pubertal and adult testicular development.", Brake DG, Evenson DP., PMID 14630127
  249. ^ 東京都健康安全研究センター情報誌 くらしの健康 第8号 (2005年6月)「生体影響試験が教えてくれること」
  250. ^ "「生体影響試験が教えてくれること」-緑茶抽出物及び遺伝子組み換え大豆の動物実験の結果から-", 知っておきたい暮らしの中の健康と安全, 東京都健康安全研究センター公開セミナー, 2004年度(平成16年度), 9月30日(木), 東京都庁都民ホール
  251. ^ the Lancet, Vol. 354, p. 1353-1354, (1999), "Effect of diets containing genetically modified potatoes expressing Galanthus nivalis lectin on rat small intestine", Stanley WB Ewen and Arpad Pusztai
  252. ^ [11]
  253. ^ the Lancet, Vol. 354, p. 1314-6, (1999),commentary, "Genetically modified foods: "absurd" concern or welcome dialogue?", Richard Horton
  254. ^ GM debate, Lancet, Vol. 354, Issue 9191, 13 November 1999, p. 1725-1729[12][13][14][15][16][17][18][19][20][21][22]
  255. ^ 平成22年度遺伝子組換え農作物等に関する意識調査報告書
  256. ^ Exploring attitudes to GM food Final Report





英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「遺伝子組み換え作物」の関連用語

遺伝子組み換え作物のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



遺伝子組み換え作物のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの遺伝子組み換え作物 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS