遺伝子組み換え作物 作製法

遺伝子組み換え作物

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/11/27 04:56 UTC 版)

作製法

概説

遺伝子組換え植物を作製する上で、植物のホスト(宿主)・ベクター系 (host-vector system) が必要とされる。そのホスト・ベクター系を構築する上で以下の4種類の系が必要とされる。

  • 植物細胞への遺伝子の導入系(導入系)
  • 遺伝子の組換わった細胞(形質転換細胞)だけを選択するための系(選択系)
  • 導入した遺伝子を複製させ、細胞分裂後にも伝達させるための系(複製系)
  • 単一の細胞から植物個体まで再生させるための系(分化・再生系)

これらについて以下の節で簡単に説明する。

なお、外来遺伝子の導入場所として、細胞の核ゲノムだけではなく、プラスチド・ゲノムもある。プラスチド・ゲノムに導入して形質を変えることをプラスチド形質転換(plastid transformation)という。

また、遺伝子組換え食品反対派からの反対理由の一つであった「医療用、家畜用抗生物質耐性遺伝子の選択マーカー遺伝子としての利用」を回避するために用いられている、「新しい選択マーカー遺伝子と選択マーカー遺伝子の除去系の利用」についても述べる。

さらに、反対理由の一つである「ゲノムの特定の場所を狙って遺伝子を導入できない」という問題を解決するためにジーン・ターゲッティングの技法が導入されていることについても紹介する。また、導入された遺伝子の利用を制限する遺伝的利用制限技術についても解説する。

その他、遺伝子組換え作物の作製法とは直接関係ないが、それが商品化され一般の圃場で栽培されるために要求されている「環境に対する影響」と「食品としての安全性」を評価する安全性審査についても述べる。

導入系

導入系とは、目的とする遺伝子を細胞の遺伝子が発現する場所に導入するための系である。遺伝子を導入・発現させるための植物細胞内の小器官として、現在、核とプラスチド(plastid)が標的となっている。導入系にはいろいろな手法があるが、現在の主要な方法は、パーティクル・ガン法アグロバクテリウム法であり、それぞれについて簡単に説明する。

その他にも、DNAを含んだ等張液中のプロトプラストに高電圧の電気パルスを与えて細胞膜に短時間だけ穴を開けて等張液中のDNAを細胞内に導入させるエレクトロポレーション法があるが、その操作の煩雑さと効率の低さとイネへのアグロバクテリウム法の適用が可能になったことにより、現在ではほとんど利用されていない。また、最近、使用例が増えてきたウィスカー(whisker)法がある。

パーティクル・ガン法

ウィスカー法

ウィスカーとは、髭状の強度の高い単結晶であり、マイクロ試験管中で植物組織やカルスと滅菌処理されたウィスカーとDNAを含む溶液を激しく攪拌し、ウィスカーによって傷ついた細胞内に溶液中のDNAが侵入し取り込まれるようにする。組織やカルスを洗浄後、固体選択培地にて形質転換体を選択し増殖させる。使用されるウィスカーとしてシリコンカーバイドよりホウ酸アルミニウム(2B2O3・9Al2O3)のものが安全性の面から好まれる。植物の形質転換操作手順は、植物組織とウィスカーをDNAを含む溶液中で激しく撹拌、洗浄し、その後は、後述の「パーティクル・ガン法による手順」の4.以降と同様である。

アグロバクテリウム法

Agrobacterium tumefaciens(正式名称 Rhizobium radiobacter)が主に用いられている。自然界ではA. tumefaciensは、双子葉植物宿主としてクラウンゴール(crown gallまたはcrowngall)という腫瘍を形成させ、それをA. tumefaciensは資化できるが植物は資化できないオパイン(またはオピン: opine)という特殊なイミノ酸を生産する工場としている。これを生物学的植民地化という。これはA. tumefaciensに含まれるTi (tumor inducing) plasmidのT-DNA (transferred DNA)が植物細胞の核ゲノムに導入されたことによって生じる。そこで、このDNA導入機構を利用して植物への遺伝子導入方法として中間ベクター法とバイナリーベクター法(binary vector)が開発された。そのうち、現在はバイナリー・ベクター法が主流である。これは、Ti plasmidの本来のT-DNAを除去されたvir helper Ti plasmidと、大腸菌とA. tumefaciensの双方で利用できる小型のシャトル・ベクター(shuttle vector)に人工のT-DNAを付与したものとで構築されている。vir helper Ti plasmidには、本来のT-DNAが存在しないため、植物にクラウンゴール(腫瘍)を形成できないが、T-DNAを植物ゲノムに導入するために必要なvir領域が存在しているため、他のプラスミド上に存在する人工T-DNAを植物に導入できる。このように同一のDNA上に存在しなくても、作用しあえる遺伝子間の関係をトランスという。以下に、バイナリー・ベクター法を簡単に説明する。

A. tumefaciensに存在するTi plasmidは巨大プラスミドであり、これをA. tumefaciensから直接単離し試験管内で操作することは困難である。一方、Ti plasmid上にはvir領域という、T-DNAを植物ゲノムに導入するために必要な遺伝子群が存在するので、Ti plasmidは植物への遺伝子導入には必要である。しかし、本来のT-DNAは植物を腫瘍化するので不要である。そこで、本来のT-DNAを欠損したがvir領域を保持したままのvir helper Ti plasmidとそれを保持するA. tumefaciensの菌株が開発された。A. tumefaciensの染色体上にも植物への遺伝子導入に必要とされる遺伝子群(chv genes: chromosomal virulence genes)が存在するために、更にTi plasmidの宿主としてもA. tumefaciensはアグロバクテリウム法において必要とされる。

T-DNAの両末端にはRB(right border:右境界配列)とLB(left border:左境界配列)という短い配列が存在している。RBとLBに挟まれた配列が植物に導入され、その間の配列には特異性がない。つまり、植物に導入したい遺伝子や形質転換植物を選択するための選択マーカー遺伝子をRBとLBに挟みこめば、任意の人工のT-DNAを構築できる。

更に、vir領域とT-DNAとの作用関係はトランスであり、両者が同一のプラスミド上に存在している必要が無い。そこで、操作しやすい小型のシャトル・ベクターに人工のT-DNAを付与したT-DNAプラスミドを試験管内で改変した後に大腸菌を用いて増幅させる。その後、T-DNAプラスミドをA. tumefaciensへ導入して、A. tumefaciens内でvir helper Ti plasmidと共存させて植物に人工のT-DNAを導入させる。この小型のシャトル・ベクターであるT-DNAプラスミドは、大腸菌での複製開始点と広範囲のグラム陰性菌の間での複製可能な複製開始点が存在する広宿主域ベクターであり、また、人工のT-DNA部分内に存在する植物の形質転換の選択に用いられる選択マーカー遺伝子以外にも、大腸菌とA. tumefaciensの形質転換体の選択に必要な選択マーカー遺伝子を別に保持している。

A. tumefaciensの本来の宿主は双子葉植物であるが、vir領域の転写を誘導するフェノール系物質アセトシリンゴン(acetosyringone)の利用やvir領域の転写活性が恒常的に高いhypervirulent helper Ti plasmidの開発により、イネなどの単子葉植物真菌類などへの応用が可能となってきている。

アグロバクテリウム法は、パーティクル・ガン法に比べ高価な機材は必要なく、また、ランニングコストも低い。T-DNAは植物の核ゲノムに1〜2コピー程度の低コピー数で導入されることが多い。一方、アグロバクテリウムの感染後に抗生物質を用いてアグロバクテリウムを除去するなどの煩雑な操作が必要であり、アグロバクテリウムの感染効率も材料の種類や状態によって様々に変化する。

選択系

多数の細胞を材料として、それらに遺伝子導入を試みても、それらの中から極少数の形質転換体しか得られないことが多い。そのため、形質転換体のみを特異的に選択する選択マーカー遺伝子を目的遺伝子以外に同時に導入する必要がある。選択マーカー遺伝子の性質としては、形質転換細胞のみが生存・増殖できるポジティブ選択可能であり、更に形質転換細胞と非形質転換細胞とが混在しあったキメラ(chimera)を形成しにくいことが望ましい。多くの場合、アミノグリコシド抗生物質カナマイシン(kanamycin)やG418ハイグロマイシンB(hygromycin B)などの耐性遺伝子が遺伝子組換え作物にも用いられてきたが、現在では後述の新しい選択マーカー遺伝子やマーカー除去の技術が用いられるようになった。

複製系

導入された遺伝子が植物細胞の細胞分裂にあわせて複製されなくては、一過性の遺伝子発現(transient gene expression)となって、安定した形質転換植物を得ることができない。そこで外来遺伝子の複製系が必要となる。現在、植物の場合は外来遺伝子が植物の核ゲノムに挿入されて、核ゲノムの複製にあわせて一緒に複製される様にすることが主流である。また、プラスチドのDNAに外来遺伝子を相同組換えによって導入する系も存在する。

分化・再生系

外来遺伝子が導入された単一の形質転換細胞より植物個体を分化・再生する系である。上記の三つの系は効率の高低はあるがほぼ共通の手法を用いることができる。しかし、この系は、植物のホスト・ベクター系を構築する上で、この系が確立すればその植物の形質転換植物個体がえられるのとほぼ同じ意味を持つほど重要なものである。多くの場合、オーキシンサイトカイニンなどの植物ホルモンの濃度比を変えることによって植物個体を再生させている。しかし、材料の状態や培養開始からの時間や材料の成熟度などによって大きく変化する。多くの場合、カルスを経てカルスからシュートが分化してくる。そのシュートを発根培地に植え継いでから馴化して鉢上げする。なお、シロイヌナズナ(アラビドプシス: Arabidopsis thaliana)やその近縁のストレス耐性の強いThellungiella halophila (salt cress)などにおいては、未熟な花蕾をアグロバクテリウム懸濁液につけるフローラル・ディップ(floral dip)法や、花蕾にアグロバクテリウム懸濁液を噴霧したりするフローラル・スプレー(floral spray)法が用いられており、それらの処理後に植物体より得られた種子を選択培地上に置床し発芽させ、その中から形質転換体を選択している。つまり、もともと分化能を持つ種子を発芽させて選択するだけなので人為的な再生系は必要とされない。フローラル・ディップ法やフローラル・スプレー法を適用できる植物はまだ少数ではあるが、適用できれば形質転換植物を得る操作が極めて簡便化される。

その他、カルスなどの未分化な状態での形質転換植物を培養することが目的の場合には、分化・再生系は必要とされない。

植物の形質転換操作手順

パーティクル・ガン法による手順

パーティクル・ガン法による一般的な形質転換植物を得る操作手順の例を簡単に示す。

  1. 植物に導入したい遺伝子と選択マーカー遺伝子が存在するDNA溶液とよく懸濁した金の微粒子とを混和してエタノール沈殿を行う。
  2. 遠心分離により回収されたDNAでコートされた金の微粒子を風乾し、パーティクル・ガンにセットする。
  3. 無菌的植物もしくは滅菌した植物の葉の断片や茎の断片などの組織片をシャーレの中の固体培地上に置床してパーティクル・ガンにセットしてから、金の微粒子を打ち込む。
  4. 植物組織をカルスを誘導する植物ホルモンも含む選択培地に植え継ぎ、選択培地上で増殖するカルスを選択する。
  5. 増殖したカルスをシュート分化用の植物ホルモンも含む選択培地に植え継ぎ、シュートを分化させる。
  6. カルスからシュートを切除して、シュートを発根用の選択培地に植え継ぎ、発根した後に鉢上げして馴化する。
  7. カルスが形成された後の各段階で遺伝子の導入を確認する。

アグロバクテリウム法による手順

バイナリー・ベクターを用いたアグロバクテリウム法による一般的な形質転換植物を得る操作手順の例を簡単に示す。

  1. 小型プラスミドのシャトル・ベクター上のT-DNA部分に目的遺伝子を挿入する。T-DNA部分には選択マーカー遺伝子も含まれている。
  2. 組換わったプラスミドを大腸菌に導入して、大腸菌中で増やしてから回収し、挿入遺伝子を確認する。
  3. 回収したプラスミドを電気穿孔(エレクトロポレーション: electroporation)法や三親接合伝達法などを利用してvir helper Ti plasmidを含むA. tumefaciensへ導入する。その際、シャトル・ベクター上のバクテリアでの選択マーカー遺伝子を利用してシャトル・ベクターが導入されたA. tumefaciensを選択する。
  4. 選択したA. tumefaciensを液体培地で増殖させて集菌し、共存培養培地に懸濁する。
  5. 無菌的植物もしくは滅菌した植物の葉の断片や茎の断片などの組織片をシャーレの中に移し、A. tumefaciensと共存培養する。この際に、アセトシリンゴンなどを添加すると感染効率が上昇する。
  6. 共存培養が終わった植物組織片をカルスを誘導する植物ホルモンも含む選択培地に植え継ぎ、選択培地上で増殖するカルスを選択する。この培地には、A. tumefaciensを除菌するためのカルベニシリンやセフォタキシムなどの植物には影響が少なく、アグロバクテリウムには強く作用する抗生物質が含まれている。
  7. 増殖したカルスをシュート分化用の植物ホルモンと除菌用抗生物質も含む選択培地に植え継ぎ、シュートを分化させる。
  8. シュートを切除して、除菌用抗生物質も含む発根用の選択培地に植え継ぎ、発根した後に鉢上げして馴化する。
  9. カルスが形成された後の植物体の各段階で遺伝子の導入とA. tumefaciensの除去を確認する。

プラスチド形質転換

プラスチド形質転換(plastid transformation)とは、植物細胞の核ゲノムにではなく、プラスチド・ゲノムに外来DNAを導入して形質を変えることである。プラスチドには、プラスチド・ゲノムが複数個存在し、更に細胞中にプラスチドが多数存在するため、細胞当たり数千コピーのプラスチド・ゲノムが存在することもある。そのため、大規模な遺伝子量効果(gene dosage effect)を期待でき、核ゲノムに外来遺伝子を導入してタンパク質を生産させるよりも遥かに多量の目的タンパク質を生産させることが可能となる場合がある。また、プラスチドの転写・翻訳機構は原核生物型なので、複数の外来遺伝子を単一のポリシストロニック・オペロン(polycistronic operon)として導入可能である。

プラスチド形質転換における遺伝子導入系として、パーティクル・ガン法が用いられている。導入されたDNA断片は相同組換えによるプラスチド・ゲノムとの遺伝子置換によってプラスチド・ゲノムに組み込まれ、プラスチド・ゲノムの複製に合わせて複製される。そのため、プラスチド形質転換には、外来DNAが組み込まれても影響の少ない、プラスチド・ゲノムの一部が、事前に単離されている必要がある。つまり、植物種やプラスチド・ゲノムの種類毎に導入するために必要なベクターが異なることになる。具体的には、単離されたプラスチド・ゲノムの一部の中で外来DNAが挿入されても影響の少ない部位に選択マーカー遺伝子と共に目的遺伝子のカセットが挿入されたDNAを調製する。これがパーティクル・ガン法で植物細胞に導入されるとカセットの両側の配列とプラスチド・ゲノムのそれらとの相同配列間の二カ所で相同組換えが低頻度で生じ、遺伝子置換によって外来DNAがプラスチド・ゲノムに挿入される。この組換え型のプラスチド・ゲノムを選択的に増幅させるための選択系が必要になる。遺伝子置換されたプラスチド・ゲノムはプラスチド中で野生型のプラスチド・ゲノムと混在した状態(ヘテロプラスミー: heteroplasmy)であるが、選択を繰り返していく間にそのプラスチドに含まれるゲノムDNAが全て組換え型になった状態となり、更にその細胞中に含まれるプラスチド全体が組換え型になる(ホモプラスミー: homoplasmy)ことが期待される。プラスチド形質転換において細胞中の全プラスチドを組換え型のホモプラスミーにするためには細胞の選択を長期間続ける必要がある。そのため、プラスチド形質転換植物を得るために必要な時間は、核ゲノムに外来遺伝子を導入して形質転換植物を得るよりも長くなる傾向がある。

プラスチド形質転換の選択系として、スペクチノマイシン(spectinomycin)と、大腸菌のトランスポゾンであるTn7由来のスペクチノマイシン耐性遺伝子aadAが用いられることが多い。

新しい選択マーカー遺伝子と選択マーカー遺伝子の除去系の利用

医療用、畜産用の抗生物質に対する耐性マーカー遺伝子の利用制限

現在の遺伝子組換え手法において、多数の細胞を材料としてその中から極少数の形質転換細胞を選択する操作が用いられることが多い。そのため、形質転換細胞を選択するための選択マーカー遺伝子の発現を指標として形質転換体を選択している。この植物の選択マーカー遺伝子は組換え作物においてもカナマイシン(kanamycin)などのアミノグリコシド(aminoglycoside)系抗生物質に耐性を与える遺伝子が用いられることが多かった。そこに、社会政策的な問題が形質転換植物の選択系にも影響をおよぼした。EUは2004年末をもって医療用、家畜用に用いられる抗生物質に対する耐性遺伝子で形質転換植物細胞の選択を禁止した。そして、今後、EUで販売される遺伝子組換え植物や食品は他の選択マーカー遺伝子が用いられているか、選択マーカー遺伝子が除去されていなくてはならないとした(European Parliament 2001)[134]。形質転換植物の選択マーカー遺伝子は基本的には形質転換体の選択という育種の極初期に用いられるに過ぎない。

しかし、遺伝子組換え食品反対派は、組換え作物が持つカナマイシン耐性遺伝子(NPTII: aminoglycoside (neomycin) phosphotransferase遺伝子) やハイグロマイシンB耐性遺伝子(hpt: hygromycin phosphotransferase遺伝子)などの抗生物質耐性遺伝子が腸内細菌に極低い頻度であっても取り込まれる可能性があるとし、これを批判の根拠の一つとしていた。そこで、除草剤として用いられているビアラホス(bialaphos: phosphinothricinとなって作用)の様な農業用抗生物質や医療用・畜産用にほとんど用いられていない抗生物質を除いて、医療用・畜産用抗生物に対する耐性遺伝子を選択マーカーとして利用することを規制したわけである。その結果、新たな選択マーカー遺伝子を利用した選択系が用いられるようになった。更に、初めの選択では抗生物質耐性遺伝子を選択マーカー遺伝子として利用するが、後にその抗生物質耐性遺伝子を欠失させる手法が開発された。ただし、カナマイシン耐性を付与する遺伝子nptIIは、自然界に広く広がって存在しており、カナマイシン自体が医薬としての使用が極希か、もしくは使用されていないという理由で規制外となっている[28]

なお、EUの予算によって設立・運営されている独立機関であるEuropean Food Safety Authority (EFSA)は、"EFSA evaluates antibiotic resistance marker genes in GM plants" (News Story 11 June 2009)において、"In their joint opinion, the GMO and BIOHAZ Panels concluded that transfers of ARMG (antibiotic resistance marker genes) from GM plants to bacteria have not been shown to occur either in natural conditions or in the laboratory."とあるように遺伝子組換え植物からバクテリアへの抗生物質耐性マーカー遺伝子の移行を自然条件下でも実験室でも観察できなかったと発表している。

抗生物質耐性以外の新たな選択マーカー遺伝子

新たな選択マーカー遺伝子の中には、植物の利用できない炭素源を資化または解毒できるようにするものがある。

D-amino acid oxidase (DAAO)
DAAO(EC 1.4.3.3, 反応)は赤色酵母Rhodotorula gracilis由来のDAO1にコードされているものを利用。多くのD-アミノ酸(D-amino acids)をα-ケト酸(α-keto acids: 2-オキソ酸(2-oxo acids))に変換できる。D-アラニン(D-Ala), D-セリン(D-Ser)は毒性を持ち、DAAOによって解毒されるため、形質転換体をpositive selectionできる。(D-Alaからピルビン酸(pyruvate), D-Serから3-ヒドロキシピルビン酸(3-hydroxy pyruvate)へ解毒、α位の炭素の光学活性が無くなる。)。D-イソロイシン(D-Ile), D-バリン(D-Val)の毒性は低いが、それらのα-ケト酸は毒性を持つ。そのため、部位特異的な組換えによりDAO1が形質転換体から除去された組換え体をnegative selection可能である。また、後述のcotransformationにおいては、この酵素遺伝子だけを選択マーカー遺伝子として用いても培地に加えるD-アミノ酸を変えるだけでpositive selectionもnegative selectionもを行える。
phosphomannose isomerase (PMI)
フルクトース-6-リン酸解糖系の中間代謝物であり、マンノース-6-リン酸をフルクトース-6-リン酸へ変換できれば、唯一の炭素源として資化し生育できることになる。多くの植物はPMI(EC 5.3.1.8, 反応)を所持せず、マンノース-6-リン酸をフルクトース-6-リン酸へ変換できない。そのため、マンノース(mannose)を選択培地中の唯一の炭素源とした場合、植物はマンノースを資化できないが、大腸菌Escherichia coli由来のPMI遺伝子pmiを導入された形質転換体はマンノースを解糖系へ導入できるため、生育可能となる。なお、培地から取り込まれたマンノースは植物のヘキソース・キナーゼ(hexose kinase)(ヘキソキナーゼ: hexokinaseとも記述される: EC 2.7.1.1 (反応), EC 2.7.1.2 (反応))によってマンノース-6-リン酸へ変換される。
2-deoxyglucose 6-phosphate phosphatase
2-deoxyglucose (2DOG)はグルコースの2位の炭素の水酸基が水素原子に置換されたグルコースのアナログである。2DOGはヘキソース・キナーゼによって6位の炭素の水酸基がリン酸化され、2-deoxyglucose 6-phosphateになるが、それ以上解糖系の酵素の基質とはならない。多くの植物にとって、2DOGは解糖系の阻害剤であり、細胞の成長を阻害する。そこで、2DOG耐性の酵母から2-deoxyglucose 6-phosphate phosphataseの遺伝子を単離し、植物で発現させたところ、2DOG耐性となった。
D-arabitol 4-dehydrogenase
D-arabitol 4-dehydrogenase(EC 1.1.1.11, 反応)により植物にアラビトール(D-arabitol)資化能を導入する。
phosphite oxidoreductase
phosphite oxidoreductase(EC 1.20.1.1, 反応)は亜リン酸リン酸へ酸化できる。植物は亜リン酸をリン源として利用できないため、リン源として亜リン酸のみが存在する場合は生育できない。しかし、バクテリア由来のphosphite oxidoreductaseの遺伝子を導入された形質転換細胞や形質転換植物は生育できることを利用した選択系である[135]。亜リン酸は安価であるため、安価に形質転換体を選択できる。更に、リン酸を含まず亜リン酸を含む培養土で、形質転換体と非形質転換体の種子が混在しているものから形質転換植物体だけを選択可能である。

選択マーカー遺伝子の除去系

その他、選択マーカー遺伝子を除去する系を利用するものもある。

cotransformation
抗生物質耐性などの選択マーカー遺伝子と目的遺伝子を別々のDNA断片として導入して、選択マーカー遺伝子で選択した形質転換体の中から目的遺伝子と選択マーカー遺伝子が植物細胞のゲノムの別々の部位に組み込まれたものを選択して、後代をとり目的遺伝子を持つが選択遺伝子を持たないものを選択するというもの。外来遺伝子を取り込む能力を持つコンピテントセル(competent cell)が限られていることを利用する手法である。この手法には、後代をとるという過程が含まれているため、この手法の果樹や林木などのヘテロ接合性の強い植物種に対する適用は限定的になってしまう。つまり、各遺伝子座のヘテロ接合性が強いと、たとえ自家受粉であったとしても親品種とは全く異なった形質が後代に現れてしまうため、親品種の品種改良や遺伝子解析という目的を果たすことが困難になるからである。なお、イネやダイズなど自家受粉を繰り返した結果、ホモ接合性が強い作物であれば、後代をとってもゲノムの遺伝子構成は親品種とほとんど変わらないため、問題は出にくい。
MAT vector法
日本製紙株式会社の開発したMulti-Auto-Transformationの略である。いろいろなタイプがあるが、サイトカイニン(cytokinin)合成遺伝子(iptZ)と耐塩性酵母である醤油酵母Zygosaccharomyces rouxiiの内在性プラスミドpSR1の部位特異的組換え酵素とその標的配列を順方向反復配列(direct repeats)として利用しているものの説明をする。植物ホルモンの一種であるサイトカイニンは頂芽優勢を打破するために、サイトカイニンが多いと側芽が次々伸びて多芽体を植物は形成する。iptZと部位特異的組換え酵素遺伝子を標的配列の順方向反復配列で囲み、その外側に目的遺伝子を配置したDNA(「目的遺伝子+ 反復配列 + iptZ + 部位特異的組換え酵素遺伝子 + 反復配列」カセット)を植物細胞に導入すると、サイトカイニンが過剰生産され、多芽体が形成される。その中から、部位特異的組換え酵素遺伝子が標的配列の順方向反復配列に作用してiptZと部位特異的組換え酵素遺伝子が除去され、目的遺伝子が残ったもの(「目的遺伝子+ 反復配列」カセット)を保持するシュートが正常な頂芽優勢を示す表現型のものとして得られる。それを目的遺伝子のみを所持するものか検定して、確認する。
Cre-loxP system
バクテリオファージP1の部位特異的組換え酵素であるCreとその標的配列loxP (5'-ATAACTTCGTATAGCATACATTATACGAAGTTAT-3')を2つ順方向反復配列として用いて、loxP の順方向反復配列間の選択マーカー遺伝子を含む配列を特異的に除去する系を利用したものである。(基本原理等についてはCre-loxP部位特異的組換えを参照すること。)Cre-loxP systemを用いた手法にはいくつかのものがあり、そのうちの2つを紹介する。まず1つめは交配を利用したものである。導入したい目的遺伝子はloxPの順方向反復配列の外側に、選択マーカー遺伝子はloxPの順方向反復配列の内側に配置して、「目的遺伝子+ loxP + 選択マーカー遺伝子 + loxP」カセットを作製し、それを植物に導入して形質転換植物をつくる。次に、それとCreを生産するようにcre遺伝子が導入された形質転換植物と交配して、「目的遺伝子+ loxP + 選択マーカー遺伝子 + loxP」カセットと「cre遺伝子」カセットの双方を持つ後代を得る。その後代の細胞の中には、loxP 間で組換えが生じた結果、選択マーカー遺伝子部分がループアウトして除去され残された「目的遺伝子+ loxP」カセットと「cre遺伝子」カセットの双方を持つようになった細胞が現れる。そこで、その交配株から後代を得て、その中から「cre遺伝子」カセットを持たないが「目的遺伝子+ loxP」カセットのみを持つものを選択すると選択マーカー遺伝子が除去された個体が得られる。2つめは特異的化合物誘導性プロモーターを利用したものである。「目的遺伝子+ loxP + 選択マーカー遺伝子 + 特異的化合物誘導性プロモーター+ cre + loxP」カセットを作製し植物体に導入する。特異的化合物誘導性プロモーターとして植物が通常は接することのないテトラサイクリンエストラジオール糖質コルチコイドなどで誘導されるものを利用した場合、それらの化合物で形質転換体を処理するとloxP間で組換えが生じて「目的遺伝子+ loxP」となったものが得られる。

新技術(ジーン・ターゲッティング)の導入

その他、現在、ジーン・ターゲッティング法を用いて遺伝子置換を植物に応用する試みが進んでいる。植物は相同組換え活性が低く、内在性の遺伝子と配列類似性が高いDNA断片を導入しても内在性の遺伝子と殆ど相同組換えを起こさず、非相同組換えによって標的以外に組み込まれるものが大部分である。そこで様々な工夫が必要となる。

ALS遺伝子の特異的置換

ひとつの例が、pyrimidinyl carboxy系除草剤であるbispyribacへの耐性を示すイネの開発である。前記の「除草剤耐性作物」の小節で述べたsulfonylurea系除草剤と同様に、この除草剤は分岐鎖アミノ酸(branched chain amino acids, BCAA)生合成系の酵素の一種であるacetolactate synthase (ALS)の阻害剤である。イネのある変異体は、ALSの2カ所のアミノ酸残基の変異によってbispyribacに対して高度に耐性を示す。そこで、非相同組換えによる耐性形質転換体を除去するためにpromoterとALSのN(アミノ)末端側の配列を欠失したイネ由来の変異型ALSをイネに導入して耐性になった相同組換えによる遺伝子置換体を単離した。そのhomo接合体は著しくbispyribacに対して耐性となっていた[136]

この過程で変異型ALSのpromoterとALSのN末端側の配列を欠失したものを用いているのは重要である。promoterとALSのN末端側の配列を含む完全な変異型ALSを用いればゲノムの本来のALS以外のところに非相同組換えによって挿入されてもbispyribac耐性になってしまう。また、promoterのみを除去し開始コドンから完全な変異型ALSのタンパク質コード領域(翻訳領域、ORF)を含んでいるものを用いれば、ほとんどの非相同組換えによるbispyribac耐性株を除去できるはずであるが、T-DNA taggingに用いられているようにAgrobacterium(アグロバクテリウム)法ではT-DNAはかなりの高頻度で転写活性の高い領域に挿入されるため、何らかの遺伝子のpromoter下流に挿入され、その転写方向と挿入断片のセンス鎖方向が一致すればbispyribac耐性株が生じる可能性がある。そこで、promoterとN末端側の配列を欠失したものを用いれば、非相同組換えによるbispyribac耐性形質転換体によるバックグラウンドをほぼ排除できるわけである。

この遺伝子置換体は基本的に標的となったALSの配列のみが野生型と一部異なるだけであり、他の選択マーカー遺伝子が存在しないため、突然変異により育種されたものと区別がつかない。このことは遺伝子組換え食品の実質的同等性を確保する上で大きな意味を持つ。

任意の遺伝子の特異的置換や遺伝子破壊

また、変異型ALSのようなそれ自体が選択マーカーとなる遺伝子だけでなく、任意の遺伝子を遺伝子置換により遺伝子破壊する方法が開発された。これらの方法はゲノム編集の手法の一部である。非相同組換えが生じやすい生物種において、相同組換えによる遺伝子置換体を得るための方法は大きく二つに分けられる。一つは、非相同組換え体は死滅するが、相同組換えによる遺伝子置換体は生存できるようにして遺伝子置換体を濃縮する方法である。もう一つの方法は、配列特異的に相同組換え効率を向上させる方法である。

前者の方法として、diphtheria toxinの遺伝子を利用しているものがある。これは、diphtheria toxinが真核生物の細胞質の蛋白質合成を阻害するため、diphtheria toxinを生産する真核細胞が死滅することを利用している。Agrobacterium法による形質転換においてT-DNAのright borderとleft borderの内側近傍にネガティブ選択マーカーとして働くdiphtheria toxin-A(ジフテリア毒A)遺伝子を1個ずつ逆方向反復配列(inverted repeats)として配置し、更にその内側に遺伝子破壊したい配列と相同な配列とポジティブ選択マーカー遺伝子を挿入することによって、相同組換えを起こしたもののみ生存できるようにしたものである。相同組換えによって2個のdiphtheria toxin-A遺伝子が除去されポジティブ選択マーカー遺伝子が導入された細胞は生存可能であるが、非相同組換えによって標的遺伝子以外のところにright borderとleft borderとともにdiphtheria toxin-A遺伝子が導入された細胞は死滅すると考えられる。ただし、この方法によってもイネにおいて選択された形質転換体のうち目的とする遺伝子破壊体の頻度は1.9%であった[137]。更なる効率上昇に関する研究は必要である。

後者の方法として、ジンクフィンガーヌクレアーゼ(ZFNs)やTranscription Activator-Like Effector Nuclease (TALENs)やメガヌクレアーゼ(meganuclease)を利用して、配列特異的に相同組換え頻度を上昇させ、植物における遺伝子置換効率を高める研究がある[138][139][140]。DNA二本鎖切断を修復する過程でその切断部近傍のDNAの相同組換え効率は上昇する。ゲノム中の任意の部位だけを特異的に切断しゲノムの他の部位を切断しないような酵素は長い認識配列を必要とするため、通常の制限酵素では対応できない。そこで、認識・切断させたい長いDNA配列を切断できる酵素は人為的に設計できるものでなくてはならない。それらの条件を満たすものとしてZFNsやTALENsが挙げられる。置換したい遺伝子領域内の特異的な配列を認識できる様に設計された人工的なZFNsなどを植物中で誘導性プロモーターなどを利用して生産させるとその特異的配列を含む領域でDNA二本鎖切断が生じる。そのときに置換したい領域と相同性のあるDNA断片が導入されているとそれを鋳型としたDNA修復が生じ、相同組換えによる遺伝子置換が生じることになる。この方法は人為的DNA二本鎖切断を伴わない、前述の方法より遺伝子置換効率を上昇させることができる。しかし、ZFNsの配列認識の甘さによる標的配列以外の切断もあるため、ZFNsの改良がなお必要である。また、ZFNsなどとともにエキソヌクレアーゼヘリカーゼを発現させることにより相同組換え効率を更に高めることができる。

なお、DNA二本鎖切断が生じた後、相同組換えが生じないとNHEJ(non-homologous end joining: 非相同末端結合)が生じる場合がある。その場合は、遺伝子破壊(ノックアウト)が生じることになる。

ZFNsやTALENs以外にも原核生物の外来DNA排除機構に関わるCRISPR/Cas9を用いた系がゲノム編集に利用され始めている(ゲノム編集コンソーシアム)。CRISPR/Cas9系では、特定DNA配列を認識するガイドRNAに対応する合成DNAをベクターに挿入するだけである。そのため、複数のジンクフィンガー・モチーフを組み合わせて作成されるZFNsを作製するよりも簡便で短時間に人工エンドヌクレアーゼ系を構築可能である。

遺伝子利用制限技術

遺伝子利用制限技術(GURTs: gene use restriction technologies)または遺伝的利用制限技術(GURTs: genetic use restriction technologies)とは、特異的化合物による遺伝子発現誘導系と配列特異的な組換え酵素とその標的配列を利用した遺伝子発現や形質を人為的に制御する技術である。この技術のことを、遺伝子組換え作物反対派は形質(trait)を制御することにかこつけて「裏切り者(traitor)」とよぶことがある。この技術を利用すれば、次世代の種子から導入された遺伝子を除去したり、必要ないときまでは形質が現れないがその形質が必要な場合には特定の化合物で処理すると形質を誘導したりできる。また、いわゆる「ターミネーター技術」もこの応用例である。

特異的化合物による遺伝子発現誘導系

外部から与えた化合物によって遺伝子発現を誘導するために開発された。遺伝子発現を制御にはトランス転写因子シスエレメントが関与している。トランス転写因子はドメイン(domain)構造をとっており、それらはシスエレメントである特定のDNA配列を認識して結合するDNA結合領域や、転写活性化に関与するトランス活性化領域や、シグナルを検知して転写活性化能を制御するシグナル検知領域などに分けることができる。これらのドメインを別のトランス転写因子のドメインと交換することにより、別のDNA配列と結合させたり、別のシグナルによって転写活性を制御できたりする場合がある。そこで、外部から与える化合物をシグナルとする人工のトランス転写因子とシスエレメントの系が開発された。

人工のトランス転写因子に求められる条件として、

  • 人工のトランス転写因子の活性を制御するシグナルとなるインデューサーアクチベーターとして特異的化合物が必要であり、それらは植物の生活環の中で合成されず、更に接する可能性の低い化合物であること。
  • 人工の転写因子が結合して転写を制御する、プロモーターのシスエレメントとなるDNA配列が植物に存在しないもの。植物が元々用いているようなシスエレメントを利用すると、植物に予定外の影響を及ぼす可能性が高くなる。そこで、進化的に離れたバクテリアなどのシスエレメントを利用すると、植物自身が本来持っているトランス転写因子とバクテリア由来のシスエレメントとが相互作用する可能性は低くなる。

が挙げられる。上記の条件を満たすために、バクテリア由来のシスエレメントと結合するDNA結合領域のアミノ酸配列、特異的化合物と結合して転写因子の活性を制御するシグナル検知領域のアミノ酸配列、及び、トランス転写活性化領域のアミノ酸配列との三つの領域を融合した人工のキメラ・トランス転写因子が合成されている。現在では、テトラサイクリンエストラジオール糖質コルチコイドなどによる遺伝子発現誘導系が開発されている。

  • テトラサイクリン誘導系:大腸菌トランスポゾンTn10に存在するテトラサイクリン耐性オペロン(tetオペロン)の発現は、リプレッサーであるTetR(アミノ酸配列)とオペレーターであるtetO (5'-TCCCTATCAGTGATAGAGAA-3')によって負に制御されている。テトラサイクリン非存在下ではTetRは活性型でtetOに結合して転写を阻害しているが、テトラサイクリン存在下では不活性型となりtetOから解離する。つまり、テトラサイクリンがtetオペロンのインデューサーである。そこで植物中で構成的に発現する遺伝子のプロモーターの下流にTetRの遺伝子tetRを結合したものと、それとは別の別のプロモーターの下流にtetOを複数個連結するとともに更にその下流に発現を誘導したい遺伝子を結合したものを組み合わせたものから構築されている。tetOを複数個連結している理由はTetRの結合効率を高めて、テトラサイクリン非存在下での遺伝子発現抑制効果を高めるためである。テトラサイクリンをインデューサーとして投与することによってtetO下流の遺伝子は誘導される。なお、インデューサーとしてはテトラサイクリンよりもドキシサイクリンの方が誘導性が高い。なお、この系はキメラ・トランス転写因子を用いたアクチベーター型のものではなく、リプレッサー型である。
  • エストラジオール誘導系:DNA結合領域として大腸菌のSOSレギュロン(regulon)のリプレッサーであるLexA(アミノ酸配列)の第1-87アミノ酸残基配列、単純ヘルペスウイルス(HSV: Herpes Simplex Virus)由来のVP16(アミノ酸配列)のトランス転写活性領域(第403-479アミノ酸残基配列)、ヒト・エストロゲン受容体のシグナル検知領域(第282-595アミノ酸残基配列)を融合して作られた合成転写活性化因子XVE(アミノ酸配列)と、本来はLexAが結合するオペレーターであるSOS box (5'-TACTGTATATATATACAGTA-3')をXVEが結合するシスエレメントとし、CaMV 35S最小プロモーターのTATAボックス(TATA box)の上流にSOS boxを複数個配した転写誘導系である[141][142][143]。CaMV 35S最小プロモーターにはエストラジオールが存在しないとほとんど転写活性がない。しかし、XVEとエストラジオールが結合するとXVEはSOS boxと結合して下流のCaMV 35S最小プロモーターの転写活性を強力に誘導する。つまり、正の制御系である。
  • デキサメタゾン誘導系:DNA結合領域およびシグナル検知領域としてTetR(1-208アミノ酸残基)と、別のシグナル検知領域としてラットの糖質コルチコイド受容体(GR: glucocorticoid receptor)のホルモン結合領域(512-794アミノ酸残基)と、HSVのVP16のトランス転写活性化領域(363-490アミノ酸残基)の融合蛋白質TGVとtetOを利用して、デキサメタゾンで誘導、テトラサイクリンで抑制する系である[144][145]。TetRが結合するオペレーターであるtetOをTGVが結合するシスエレメントとし、CaMV 35S最小プロモーターのTATAボックスの上流にtetOを複数個配してある。テトラサイクリンもデキサメタゾンも非存在下ではCaMV 35S最小プロモーターの転写活性はほとんどない。テトラサイクリン非存在でかつデキサメタゾン存在下ではTGVにデキサメタゾンが結合したものがtetOに結合して、転写が強力に誘導される。そこにテトラサイクリンが添加されるとTGV-デキサメタゾン-テトラサイクリン複合体となってtetOから遊離するため転写が抑制される。

上記の化学物質による遺伝子発現制御系を用いて、配列特異的組換え酵素の生産を制御してin vivoで形質を改変する技術(遺伝子利用制限技術)が開発された。その配列特異的組換え酵素とその標的配列としてCreとloxP酵母の2-μm DNAや醤油酵母のpSR1の組換え酵素とそれらの標的配列、他が用いられている。その応用例を挙げる。

いわゆる「ターミネーター技術」

次世代の種子の発芽抑制技術である。自家受粉する作物では、組換え品種からの契約外の自家採種が行われていることがある。その制限のためと交配による遺伝子拡散の防止ために開発された。この技術のためには3つの系が必要である。

  • 毒素遺伝子は種子成熟の晩期に発現して種子や胚を殺すが、成長・繁殖時期や他の部位では発現してはならない。そのために、胚発生後期に種子特異的に発現するプロモーターとそれを用いて生産される毒素遺伝子。
  • 種子特異的に発現する毒素遺伝子が組み込まれていても、種苗会社が大量に種子生産ができるようにその発現を抑制する系。
  • 種子販売に際して、種子特異的発現できるように毒素遺伝子の抑制を解除するための系。

それらを満たすために、ワタにおける例では次のものが用いられている。

  • ワタの後期胚形成主要タンパク質(LEA: late embryogenesis abundant protein)遺伝子LEAのプロモーターとサボンソウ(Saponaria officinalis)のリボソーム不活化タンパク質(RIP: ribosome-inactivating protein, EC 3.2.2.22, アミノ酸配列, 塩基配列)かリボヌクレアーゼ(RNase)であるBARNASEを毒素とする。
  • LEAプロモーターと毒素遺伝子の間を分断して転写や翻訳を阻害する分断配列。
  • 分断する配列を条件的に除去するための系として配列特異的組換え酵素とその標的配列。

例としてRIPとCreとloxPtetRtetOの系について説明する。「目的遺伝子 + (LEAプロモーター + loxP + 分断配列 + loxP + RIP) + (構成的プロモーター + tetR) + (構成的プロモーター + 複数のtetO + cre)」というカセットを植物体に導入しておく。構成的プロモーターによりリプレッサーであるTetRが常に生産されているため、オペレーター配列であるtetOにTetRが結合してcreは転写・翻訳されない。その結果、後期胚形成期であっても、分断配列によって毒素RIPが生産されないので正常な胚発生が進行する。そのため、種苗会社はこの植物の種子を増やすことができる。しかし、種子を出荷する前にインデューサーであるドキシサイクリンで処理するとTetRが不活化してtetOから遊離してCreが生産される。その結果、順方向に並んでいる二つのloxPの間でCreにより配列特異的な組換えが生じて「目的遺伝子 + (LEAプロモーター + loxP + RIP) + (構成的プロモーター + tetR) + (構成的プロモーター + 複数のtetO + cre)」という構造に変換する。LEAプロモーター + loxP + RIPの組み合わせは転写と翻訳を阻害されない。この構造を持つ種子は正常に発芽・生育・開花できるが、受精後の種子形成の最終段階である後期胚形成期に胚においてのみ転写活性を持つLEAプロモーターにより、胚においてRIPが生産され胚は死滅する。その結果、次世代の種子は発芽できなくなる。

この技術に関しては反対意見が強いために現時点においては栽培されている遺伝子組換え作物には利用されていない。なお、「ターミネーター技術」とは遺伝子組換え作物反対派から命名された通称である。

遺伝的改変遺伝子除去技術(genetically modified gene deletor)

いわゆる「ターミネーター技術」を利用した場合、次世代の種子が発芽しなくなるため批判が強い。そこで、次世代の種子は発芽できるが導入された遺伝子が次世代には伝わらないように花粉や種子から除去する技術である。その結果、農家が契約に反して自家採種しても、その種子からは組換え品種を得ることができなくなる。生態系に対する遺伝子汚染を減少することもできる。種子や花粉特異的プロモーターを用いて配列特異的な組換え酵素遺伝子を誘導して、標的配列の順方向繰り返し(direct repeats)によって囲まれたDNA領域(導入された形質に係わる遺伝子)を、順方向繰り返し配列間の特異的相同組換えによってループアウトさせて除去して遺伝子拡散を防ぐ系である。

花粉特異的発現する遺伝子としてBGP1(配列)とLAT52(配列)が、花粉と種子特異的発現をする遺伝子としてPAB5(配列)が同定され、それらのプロモーターが単離された。loxPと2-μm DNAの標的配列を連結した配列を順方向繰り返し配列として利用し、それらのプロモーターでCreと2-μm DNAの配列特異的組換え酵素をそれぞれ単独で生産させた場合、導入された遺伝子を得られた種子からほぼ100%除去することができた[146]

その他、アシネトバクター(Acinetobacter)由来のセリン・リゾルベースCinH組換え酵素(serine resolvase CinH recombinase)(CinH:アミノ酸配列)とその認識配列RS2[147]を用いて、花粉特異的に発現する遺伝子LAT52のプロモーターを用いてCinHを生産させて、順方向繰り返し配列とした二つのRS2に挟まれた領域(導入遺伝子)を除去する系も開発されている[148]RS2は、119 bpと長いため特異性が高くなるので、CinHとRS2を用いた系ではゲノムにもともと存在する類似の配列と組換える可能性はほとんどない。

なお、上記以外にもストレプトマイセス(Streptomyces)由来のファージphiC31のインテグラーゼ(integrase)と標的配列であるattBattPを用いて組換えコムギでの導入遺伝子の除去にも成功している[149]。phiC31を生産する組換えコムギと除去される標的配列を持つ組換えコムギを掛け合わせて得られた後代から目的とした導入遺伝子が除去されていることが確認されている。

エピジェネティック効果を用いた形質改変植物の育種

エピジェネティック効果とは「DNAの塩基配列の変化を伴わずにおきるゲノム機能の変化」である。細胞レベルでのエピジェネティック効果は以下のメカニズムに基づく。

これらのエピジェネティック効果をもたらす操作を一過的に行っても、それに伴い変化したクロマチン状態は有糸分裂を経ても安定的に伝達され、生物の表現型に影響を与え続けることがある。つまり、初めに導入遺伝子によってエピジェネティック効果をもたらし、その後代からエピジェネティック効果を保持しつつ、かつ、導入された遺伝子配列を保持しない系統を選抜することで、植物のゲノム配列を変化させずに植物の形質を安定に変化させられる。

例えば、「non-coding short RNA (miRNA、siRNA、shRNA 等)による遺伝子制御」に関するRdDM (RNA-directed DNA methylation)を簡単に説明する。これは基本的にRNAiのgene silencing (GS)と同様の手法であり、「植物の発現を抑制したい遺伝子配列と相同性を持つコンストラクト(RdDM誘導コンストラクト)を植物体へ導入して、短鎖二本鎖RNA (dsRNA)を細胞中で作らせ、これにより相同配列部分のDNAのメチル化を誘発し、標的遺伝子の転写を抑制する」ものである。RdDMの植物育種上の重要性は、植物体の特定遺伝子を、遺伝子配列の変異を生じさせることなく、発現抑制できることにある。このDNAのメチル化状態は世代を通じて、維持される場合がある。そこで、後代において、目的の形質を保持し、かつ、導入されたRdDM誘導コンストラクトを保持しない系統を選抜する。この手法の応用により、既に様々な形質の植物体が作り出されている。

この手法には明らかな利点が存在する。DNAのメチル化自体はごく一般的な自然現象であり、真核細胞に広く発生している。RdDMによりメチル化されたDNAと自然にメチル化されたDNAを区別することは困難であり、RdDM誘導コンストラクトが除去された系統と従来の手法で育種された作物とを区別できない。導入された遺伝子が存在しないために、この手法により育種された作物はそもそも遺伝子組換え作物であるのかどうかという、遺伝子組換え作物の定義にも関わる根本的な議論を引き起こしている。


注釈

  1. ^ Ignite/Basta、 Glufosinate (グルホシネート)、Herbiace等の名称で販売されている。
  2. ^ グルタミン合成酵素の阻害剤として実際に作用するのは、ビアラホスから2分子のアラニン残基が加水分解により遊離したホスフィノスリシン英語版である。
  3. ^ phosphinothricin N-acetyltransferase: PAT, EC 2.3.1.183, 反応
  4. ^ bromoxynil: 3,5-dibromo 4-hydroxybenzonitrile, BXN, CAS No. 1689-84-5
  5. ^ ioxynil: 3,5-diiodo 4-hydroxybenzonitrile
  6. ^ bromoxynil nitrilase, EC 3.5.5.6, 反応
  7. ^ EC 2.2.1.6, ALS: acetolactate synthase(アセト乳酸合成酵素), 反応; AHAS: acetohydroxy acid synthase(アセトヒドロキシ酸合成酵素)の両活性を持つ
  8. ^ branched-chain amino acids: BCAA, バリン(L-valine)、イソロイシン(L-isoleucine)、ロイシン(L-leucine)の三アミノ酸の総称
  9. ^ chlorsulfuron
  10. ^ 2,4-dichlorophenoxyacetate2,4-ジクロロフェノキシ酢酸
  11. ^ 2,4-dichlorophenol
  12. ^ 2,4-D monooxygenase, 2,4-D モノオキシゲナーゼ, EC 1.14.11.-, 反応
  13. ^ 申請書においてアリルオキシアルカノエート系除草なっているが、アリルではなくアリールが正しい。フェニル基アリール基の一部であり、2,4-D(2,4-ジクロロフェノキシ酢酸)のフェノキシ基はアリールオキシ(またはアローキシ)基と表記されるべきである。アリルとすると別の官能基であるアリル基と誤解されかねない。
  14. ^ dicamba monooxygenase: ジカンバ モノオキシゲナーゼ, DMO
  15. ^ 4-hydroxyphenylpyruvate dioxygenase: HPPD, EC 1.13.11.27, 反応
  16. ^ 4-hydroxyphenylpyruvate
  17. ^ homogentisate
  18. ^ plastoquinone
  19. ^ 2-methyl-6-phytylquinol
  20. ^ 2-cyano-3-cyclopropyl-1-(2-methylsulfonyl-4-trifluoromethylphenyl)propane-1,3-dione: DKN
  21. ^ mesotrione, 2-(4-メシル-2-ニトロベンゾイル)シクロヘキサン-1,3-ジオン: 2-(4-mesyl-2-nitrobenzoyl)cyclohexane-1,3-dione
  22. ^ Bt11スイートコーン(官報掲載日2001.3.30), MON89034(官報掲載日2007.11.6)
  23. ^ β-lactamase, EC 3.5.2.6, 反応
  24. ^ polygalacturonase, EC 3.2.1.15, 反応
  25. ^ ACC synthase, EC 4.4.1.14, 反応
  26. ^ ACC oxidase, EC 1.14.17.4, 反応
  27. ^ ACC deaminase, EC 3.5.99.7,反応
  28. ^ S-adenosyl-L-methionine hydrolase, EC 3.3.1.2, 反応
  29. ^ 家庭においてもキウイフルーツを追熟させたい場合、エチレンをよく発生するリンゴと同じビニール袋に入れて保存するのも同じ原理である。
  30. ^ DNA adenine methylase、EC 2.1.1.72、反応
  31. ^ choline
  32. ^ choline monooxygenase, EC 1.14.15.7, 反応
  33. ^ betaine aldehyde dehydrogenase, EC 1.2.1.8, 反応
  34. ^ choline oxidase, EC 1.1.3.17, 反応
  35. ^ proline dehydrogenase, EC 1.5.99.8, 反応
  36. ^ trehalose 6-phosphate synthase, EC 2.4.1.15, 反応
  37. ^ trehalose 6-phosphate phosphatase, EC 3.1.3.12, 反応
  38. ^ ascorbate peroxidase, EC 1.11.1.11, 反応
  39. ^ glutathione peroxidase, EC 1.11.1.9, 反応
  40. ^ catalase, EC 1.11.1.6, 反応
  41. ^ superoxide dismutase, EC 1.15.1.1, 反応
  42. ^ a b nicotianamine synthase, EC 2.5.1.43, 反応
  43. ^ nicotianamine aminotransferase, EC 2.6.1.80, 反応
  44. ^ 3"-deamino-3"-oxonicotianamine reductase, EC 1.1.1.285, 反応
  45. ^ 2'-deoxymugineic acid-2'-dioxygenase: IDS3, EC 1.14.11.24, 反応
  46. ^ EC 1.14.19.1, 反応
  47. ^ EC 3.1.2.14反応
  48. ^ 反応
  49. ^ デサチュラーゼ: カルボキシル基の反対側から数えて12番目と13番目の炭素の間に二重結合、Δ6-desaturaseともいう, EC 1.14.19.3, 反応
  50. ^ 反応
  51. ^ 反応
  52. ^ 多くの場合、リシン生産菌としてコリネバクテリウム属細菌のCorynebacterium glutamicumが用いられている。
  53. ^ dihydrodipicolinate synthase: EC 4.2.1.52, 反応
  54. ^ phytoene synthase, EC 2.5.1.32, 反応
  55. ^ フィトエン・デサチュラーゼ: phytoene desaturase: CrtI, EC 1.3.99.31, 反応
  56. ^ lycopene β-cyclase, EC 5.5.1.19, 反応
  57. ^ lycopene ε-cyclase, EC 5.5.1.18, 反応
  58. ^ β-carotene 3-hydroxylase, EC 1.14.13.129, 反応
  59. ^ γ-tocopherol methyltransferase, EC 2.1.1.95, 反応
  60. ^ phytate
  61. ^ phytase, EC 3.1.3.8, 反応, EC 3.1.3.26, 反応
  62. ^ ADP-glucose
  63. ^ starch synthase, EC 2.4.1.21, 反応
  64. ^ branching enzyme, EC 2.4.1.18, 反応
  65. ^ lotaustralin
  66. ^ acetone cyanohydrin: CAS 75-86-5
  67. ^ hydroxynitrile lyase, EC 4.1.2.46, 反応
  68. ^ gossypol
  69. ^ δ-cadinine
  70. ^ farnesyl pyrophosphate
  71. ^ (+)-δ-cadinene synthase, EC 4.2.3.13, 反応
  72. ^ L-asparagine synthetase, EC 6.3.1.1, 反応
  73. ^ "「北海道遺伝子組換え作物の栽培等による交雑等の防止に関する条例」は、GM作物を栽培する場合の規制であり、今回のような場合は対象外", 「遺伝子組換え作物の栽培等による交雑等の防止に関する条例」をめぐる状況
  74. ^ 「日本の家畜飼料は、ほぼその輸入に頼っている。三石誠司・宮城大教授(経営学)の試算では、日本に輸入される全穀物は年間約3200万トンで、半分以上の約1700万トンがGMという。」 食卓どこへ:遺伝子組み換え/1 生協「不使用」から転換 (小島正美、遠藤和行) 毎日新聞 2009年11月2日 東京朝刊
  75. ^ 『フィリピンの国際イネ研究所(IRRI)のロバート・ザイグラー所長は「今こそ遺伝子革命が必要だ」と力説する。「世界を救える技術があるのに規制して使わないのは犯罪に近い」とまで言い放った。』, "遺伝子組み換えに追い風 食糧高騰・温暖化が均衡破る", (庄司直樹), 2008年7月20日 朝日新聞
  76. ^ イギリスではビタミンA不足は深刻な問題となってはおらず、文脈的にもインドと考えられるので、in Indiaをin Englandと、またはIndianをEnglandと聴き間違えたのであろう。なお、紹介者の島村菜津の同一内容を紹介した別の著作においても"ビタミン不足の英国の子どもたち"と記載されている。「世にもマヌケなスローフードへの旅 第19回 インド編 無知な経済学者・政治家が農民たちを苦しめる!」, ECO JAPAN, 日経BP, 2008年05月20日
  77. ^ ヴァンダナ・シヴァ自身は「四万人」と著書の中で述べている。"インドの子供たちは毎年ビタミンA不足で、四万人が視力を失っているが、ビタミンAが豊富でどこにでも生えている植物を除草剤で殺してしまったことが、この悲劇を招いている。", p. 214, 左から3-1行, 「緑の革命とその暴力」, ヴァンダナ・シヴァ 著, 浜谷喜美子 訳, 発行所 株式会社 日本経済評論社, 1997年8月5日 第1刷発行, 旧ISBN 4-8188-0939-X, 現ISBN 978-4-8188-0939-0
  78. ^ 紹介者の島村菜津は、同様の内容を紹介した別の著作では「4万人に近い」と記述している。"「これからは、数年単位ではなくて、もっと長いスパンで考えて、地域を豊かにしていく視点が大切なの。それに、単一品種を効率よく育てれば、薬草やビタミンをたくさん含む野草は、雑草として排除される。小麦とともに育つバツアという薬草は、ビタミンAが豊富なのに、そうしたものが一気になぎ倒される。毎年、4万人に近い子どもたちがビタミンA不足で失明しているこの国で、ですよ」", "かつて、イギリスの学者が、ビタミンAの豊富なGM米「ゴールデンライス」を開発したとき、学者は「なぜビタミン不足の英国の子どもたちを救う研究に楯突くのか」とシヴァを批判した。", "この時も、彼女は「そんな米など必要ない。それより、リンゴを1つかじろうと教えればいい。ビタミン不足で失明している産地の子の身にもなってほしい」と噛みついた。", 「世にもマヌケなスローフードへの旅 第19回 インド編 無知な経済学者・政治家が農民たちを苦しめる!」, ECO JAPAN, 日経BP, 2008年05月20日
  79. ^ 赤米黒米玄米の状態だと色素を含んでいるが、精米すると白米になる
  80. ^ 字義通り茶色の米か、玄米(brown rice)の誤訳かは不明である。なお、農学の分野おいて「茶米」とは、病害や生理障害などを受けて褐色を呈する被害粒やエクアドル茶米菌の増えた米を指す。
  81. ^ プシュタイまたはプッタイとも表記される

出典

  1. ^ GM小麦を初承認 アルゼンチン 食用混入に注視」『日本農業新聞』2020年10月13日(2020年10月22日閲覧)
  2. ^ 遺伝子組換え食品を理解するⅡ, 特定非営利活動法人 国際生命科学研究機構(ILSI) バイオテクノロジー研究会, 2010年9月印刷
  3. ^ a b 安全性審査の手続を経た旨の公表がなされた遺伝子組換え食品及び添加物一覧 厚生労働省医薬食品局食品安全部 平成30年2月23日現在
  4. ^ PNAS, July 18, (2006), vol. 103, no. 29, 11075-11080, "Yellow flowers generated by expression of the aurone biosynthetic pathway", Eiichiro Ono, Masako Fukuchi-Mizutani, Noriko Nakamura, Yuko Fukui , Keiko Yonekura-Sakakibara, Masaatsu Yamaguchi, Toru Nakayama, Takaharu Tanaka, Takaaki Kusumi, and Yoshikazu Tanaka
  5. ^ 高セルロース含量ギンドロtrg300-2 (AaXEG2, Populus alba L.) 第一種使用規程申請書等の概要
  6. ^ 概要は「低リグニンアルファルファ (CCOMT, Medicago sativa L.) (KK179, OECD UI: MON-ØØ179-5) 申請書等の概要」などによって公開されている
  7. ^ チョウ目及びコウチュウ目害虫抵抗性並びに除草剤グルホシネート及びグリホサート耐性トウモロコシ (cry1A.105, 改変cry2Ab2, cry1F, pat, 改変cp4 epsps, 改変cry3Bb1, cry34Ab1, cry35Ab1, Zea mays subsp. mays (L.) Iltis)(MON89034×B.t. Cry1F maize line 1507×MON88017×B.t. Cry34/35Ab1 Event DAS-59122-7, OECD UI: MON-89Ø34-3×DAS-Ø15Ø7-1×MON-88Ø17-3×DAS-59122-7) ( MON89034, B.t. Cry1F maize line 1507, MON88017 及びB.t. Cry34/35Ab1 Event DAS-59122-7 それぞれへの導入遺伝子の組合せを有するものであって当該トウモロコシから分離した後代系統のもの(既に第一種使用規程の承認を受けたものを除く。)を含む。)申請書等の概要
  8. ^ 除草剤グリホサート誘発性雄性不稔、チョウ目及びコウチュウ目害虫抵抗性並びに除草剤アリルオキシアルカノエート系、グルホシネート及びグリホサート耐性トウモロコシ(cry1A.105, 改変cry2Ab2, 改変cry1F, pat, DvSnf7, 改変cry3Bb1, 改変cp4 epsps, cry34Ab1, cry35Ab1, 改変aad-1, Zea mays subsp. mays (L.) Iltis)(MON87427×MON89034×B.t. Cry1F maize line 1507× MON87411×B.t. Cry34/35Ab1 Event DAS-59122-7×DAS40278、OECD UI: MON-87427-7× MON-89Ø34-3×DAS-Ø15Ø7-1×MON-87411-9×DAS-59122-7 ×DAS-4Ø278-9)並びに当該トウモロコシの分離系統に包含される組合せ(既に第一種使用規程の承認を受けたものを除く。)の申請書等の概要
  9. ^ 低飽和脂肪酸・高オレイン酸及び除草剤グリホサート耐性ダイズ(GmFAD2-1A, GmFATB1A, 改変cp4 epsps, Glycine max (L.) Merr.)(MON87705, OECD UI: MON-877Ø5-6)申請書等の概要
  10. ^ 有井 彩, 山根 精一郎「除草剤耐性遺伝子組換え作物の普及と問題点」『雑草研究』51, 263-268(2006年)
  11. ^ a b 白井洋一(独立行政法人農業環境技術研究所「GMO情報:組換え作物のメリットとデメリット」『農業と環境』No.122(2010年6月1日)
  12. ^ 除草剤ブロモキシニル耐性セイヨウナタネ(oxy, Brassica napus L.)(OXY-235, OECD UI: ACS-BNØ11-5)の生物多様性影響評価書の概要
  13. ^ Pest Manag Sci. 2005 Mar;61(3):286-91., "Herbicide resistance in transgenic plants with mammalian P450 monooxygenase genes.", Inui H, Ohkawa H., PMID 15660356
  14. ^ イミダゾリノン系除草剤耐性ダイズ(改変csr1-2, Glycine max (L.) Merr.)(CV127, OECD UI: BPS-CV127-9) 申請書等の概要
  15. ^ J Agric Food Chem. 2000 Nov;48(11):5307-11., "2,4-Dichlorophenoxyacetic acid metabolism in transgenic tolerant cotton (Gossypium hirsutum)"., Laurent F, Debrauwer L, Rathahao E, Scalla R., PMID 11087477
  16. ^ アリルオキシアルカノエート系除草剤耐性トウモロコシ (改変aad-1, Zea mays subsp. mays (L.)Iltis.) (DAS40278, OECD UI:DAS-4Ø278-9) 申請書等の概要
  17. ^ 除草剤ジカンバ耐性ダイズ (改変dmo, Glycine max (L.) Merr.)(MON87708, OECD UI : MON-877Ø8-9)申請書等の概要
  18. ^ 除草剤グリホサート及びイソキサフルトール耐性ダイズ(2mepsps, 改変hppd, Glycine max (L.) Merr.)(FG72,OECD UI: MST-FG072-3)申請書等の概要
  19. ^ 除草剤メソトリオン耐性ダイズ(改変avhppd, Glycine max (L.) Merr.)(SYHT04R, OECD UI: SYN-∅∅∅4R-8) 申請書等の概要
  20. ^ a b 農業と環境 No.102 (2008年10月1日), "GMO情報: 中国のBtワタ、ワタ以外の作物でも防除効果", 白井洋一, 独立行政法人 農業環境技術研究所
  21. ^ 農業と環境 No.87 (2007年7月1日), "GMO情報: バイオ燃料と遺伝子組換え作物 -トウモロコシの連作を可能にした技術", 白井洋一, 独立行政法人 農業環境技術研究所
  22. ^ Journal of Economic Entomology, Volume 106, Number 5, pp. 2151-2159 (2013), "Multi-State Trials of Bt Sweet Corn Varieties for Control of the Corn Earworm (Lepidoptera: Noctuidae)", A. M. Shelton, D. L. Olmstead, E. C. Burkness, W. D. Hutchison, G. Dively, C. Welty, A. N Sparks
  23. ^ Environmental Entomology (35) p. 1439-1452 (2006), “Western Bean Cutworm, Striacosta albicosta (Smith) (Lepidoptera: Noctuidae), as a Potential Pest of Transgenic Cry1Ab Bacillus thuringiensis Corn Hybrids in South Dakota”, Catangui, Michael A.; Berg, Robert K
  24. ^ Nature, Jul 19;487(7407):362-5., (2012), "Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services.", Lu Y, Wu K, Jiang Y, Guo Y, Desneux N., PMID 22722864
  25. ^ 農業と環境 No.117 (2010年1月1日), "GMO情報: Btトウモロコシの害虫抵抗性管理対策 〜緩衝帯ルールと小口栽培制限〜", 白井洋一, 独立行政法人 農業環境技術研究所
  26. ^ 農業と環境 No.96 (2008年4月1日), "GMO情報: Btワタに抵抗性発達 -対策は緩衝帯と複数トキシン品種-", 独立行政法人 農業環境技術研究所
  27. ^ a b c 農業と環境 農業と環境 No.132 (2011年4月1日), "GMO情報: 商業栽培15年、強まる飼料作物の組換え依存", 白井洋一, 独立行政法人 農業環境技術研究所
  28. ^ 農業と環境 No.120 (2010年4月1日), "GMO情報: 不正種子利用に潜む抵抗性発達の危険性", 独立行政法人 農業環境技術研究所
  29. ^ PNAS August 11, 2009 vol. 106 no. 32 p. 13213-13218"Restoring a maize root signal that attracts insect-killing nematodes to control a major pest.", Jörg Degenhardt, Ivan Hiltpold, Tobias G. Köllner, Monika Frey, Alfons Gierl, Jonathan Gershenzon, Bruce E. Hibbard, Mark R. Ellersieck and Ted C. J. Turlings
  30. ^ Plant Biotechnol Rep (2008) 2:13-20, "Production of transgenic potato exhibiting enhanced resistance to fungal infections and herbicide applications", Raham Sher Khan, Rinaldi Sjahril, Ikuo Nakamura, Masahiro Mii
  31. ^ 農業と環境 No.108 (2009年4月1日)、"GMO情報: 一難去ってまた一難 米国ワタ害虫防除作戦の教訓", 白井洋一, 独立行政法人 農業環境技術研究所
  32. ^ Rainbow Papaya
  33. ^ パパイヤリングスポットウイルス抵抗性パパイヤ(改変PRSV CP, uidA, nptII, Carica papaya L.)(55-1, OECD UI: CUH-CP551-8)申請書等の概要
  34. ^ 平成23年2月22日 未承認の遺伝子組換えパパイヤの種子の混入に関する検査の実施について
  35. ^ 平成23年4月21日 未承認の遺伝子組換えパパイヤの種子の混入に関する検査結果について(お知らせ)
  36. ^ 平成23年4月21日 農林水産省 パパイヤ種子の検査結果について
  37. ^ 平成23年2月22日 更新:平成23年2月24日 安全性未審査の遺伝子組換えパパイヤについて
  38. ^ 遺伝子組換えパパイヤ(注)による我が国の生物多様性への影響について(農林水産省及び環境省の共同見解)
  39. ^ Proc Natl Acad Sci U S A. 2009 Nov 10;106(45):19067-71. "Indirect costs of a nontarget pathogen mitigate the direct benefits of a virus-resistant transgene in wild Cucurbita.", Sasu MA, Ferrari MJ, Du D, Winsor JA, Stephenson AG. PMID 19858473
  40. ^ どんとこい
  41. ^ いもち病及び白葉枯病抵抗性イネ(DEF, Oryza sativa L.) (AD41)申請書等の概要, カラシナ由来のディフェンシン。この他にも多数の系統がある。
  42. ^ Mol Theor Appl Genet. 2002 Nov;105(6-7):809-814, "Overexpression of the wasabi defensin gene confers enhanced resistance to blast fungus (Magnaporthe grisea) in transgenic rice.", Kanzaki H, Nirasawa S, Saitoh H, Ito M, Nishihara M, Terauchi R, Nakamura I., PMID 12582903
  43. ^ Patent: JP 2003088379-A 2 25-MAR-2003
  44. ^ 陳述書 (2), 金川 貴博
  45. ^ 金川貴博「ディフェンシン産生の遺伝子組換えイネが高感染性のヒト病原菌を生み出す」『日本の科学者』第41巻第12号、日本科学者会議、2006年12月、648-653頁、CRID 1520572357127645312ISSN 00290335 
  46. ^ accession number: BD285518
  47. ^ アミノ酸配列
  48. ^ FEBS Letters, Volume 484, Issue 1, 27 October 2000, Pages 7-11, "Transgenic expression of cecropin B, an antibacterial peptide from Bombyx mori, confers enhanced resistance to bacterial leaf blight in rice", Arun Sharma, Rashmi Sharma, Morikazu Imamura, Minoru Yamakawa and Hiroaki Machii
  49. ^ Nat Biotechnol. 2000 Nov;18(11):1162-6, "Transgenic plants expressing cationic peptide chimeras exhibit broad-spectrum resistance to phytopathogens.", Osusky M, Zhou G, Osuska L, Hancock RE, Kay WW, Misra S., PMID 11062434
  50. ^ [1]
  51. ^ [2]
  52. ^ a b S-adenosyl-L-methionine
  53. ^ 1-amino cyclopropane-1-carbonic acid
  54. ^ [3]
  55. ^ 2-oxobutyrate
  56. ^ The Plant Cell, Vol. 3, 1187-1 193, November (1991), "Control of Ethylene Synthesis by Expression of a Bacterial Enzyme in Transgenic Tomato Plants",Harry J. Klee, Maria B. Hayford, Keith A. Kretzmer, Gerard F. Barry, and Ganesh M. Kishore, PMID 1821764
  57. ^ [4]
  58. ^ [5]
  59. ^ [6]
  60. ^ Nat Toxins. 1999;7(1):31-8., "Oxidative deamination of hydrolyzed fumonisin B(1) (AP(1)) by cultures of Exophiala spinifera.", Blackwell BA, Gilliam JT, Savard ME, David Miller J, Duvick JP., PMID 10441035
  61. ^ Environ Health Perspect. 2001 May;109 Suppl 2:337-42., "Prospects for reducing fumonisin contamination of maize through genetic modification.", Duvick J. PMID 11359705
  62. ^ ゼアラレノン
  63. ^ Applied and Environmental Microbiology, March 2007, p. 1622-1629, Vol. 73, No. 5, "Reduced Contamination by the Fusarium Mycotoxin Zearalenone in Maize Kernels through Genetic Modification with a Detoxification Gene.", Tomoko Igawa, Naoko Takahashi-Ando, Noriyuki Ochiai, Shuichi Ohsato, Tsutomu Shimizu, Toshiaki Kudo, Isamu Yamaguchi, and Makoto Kimura
  64. ^ 除草剤グリホサート誘発性雄性不稔及び除草剤グリホサート耐性トウモロコシ(改変 cp4 epsps, Zea mays subsp. mays (L.) Iltis)(MON87427, OECD UI: MON-87427-7)申請書等の概要
  65. ^ [7]
  66. ^ 除草剤グルホシネート耐性及び雄性不稔及び稔性回復性セイヨウナタネ(改変bar, barnase, barstar, Brassica napus L.)(MS8RF3, OECD UI: ACS-BNØØ5-8×ACS-BNØØ3-6)の生物多様性影響評価書の概要
  67. ^ 耐熱性α-アミラーゼ産生並びにチョウ目及びコウチュウ目害虫抵抗性並びに除草剤グルホシネート及びグリホサート耐性トウモロコシ (耐熱性α-アミラーゼ産生並びにチョウ目及びコウチュウ目害虫抵抗性並びに除草剤グルホシネート及びグリホサート耐性トウモロコシ(改変amy797E, 改変cry1Ab, cry34Ab1, cry35Ab1, 改変cry3Aa2, cry1F, pat, mEPSPS, Zea mays subsp. mays (L.) Iltis) (3272×Bt11×B.t. Cry34/35Ab1 Event DAS-59122-7×MIR604×B.t. Cry1F maize line 1507×GA21, OECD UI:SYN-E3272-5×SYN-BTØ11-1×DAS-59122-7×SYN-IR6Ø4-5×DAS-Ø15Ø7-1×MON-ØØØ21-9)並びに当該トウモロコシの分離系統に包含される組合せ(既に第一種使用規程の承認を受けたものを除く。)の申請書等の概要
  68. ^ Nature 356, 710 - 713(23 April 1992), "Genetically engineered alteration in the chilling sensitivity of plants", N. Murata, O. Ishizaki-Nishizawa, S. Higashi, H. Hayashi, Y. Tasaka & I. Nishida
  69. ^ Plant and Cell Physiology, 2002, Vol. 43, No. 7 751-758, "An Increase in Unsaturation of Fatty Acids in Phosphatidylglycerol from Leaves Improves the Rates of Photosynthesis and Growth at Low Temperatures in Transgenic Rice Seedlings", Tohru Ariizumi, Sachie Kishitani, Rie Inatsugi, Ikuo Nishida, Norio Murata and Kinya Toriyama, PMID 12154137
  70. ^ "OsSDIR1 overexpression greatly improves drought tolerance in transgenic rice.", Gao T, Wu Y, Zhang Y, Liu L, Ning Y, Wang D, Tong H, Chen S, Chu C, Xie Q., Plant Mol Biol. 2011 May;76(1-2):145-56., PMID 21499841
  71. ^ 乾燥耐性トウモロコシ(改変cspB, Zea mays subsp. mays (L.) Iltis)(MON87460, OECD UI: MON-8746Ø-4)申請書等の概要
  72. ^ オリジナルのcspBの塩基配列オリジナルのCspBのアミノ酸配列
  73. ^ betaine aldehyde
  74. ^ Plant Molecular Biology, July 2014, Vol. 85, p. 429-441, "Transgenic Arabidopsis expressing osmolyte glycine betaine synthesizing enzymes from halophilic methanogen promote tolerance to drought and salt stress",Shu-Jung Lai, Mei-Chin Lai, Ren-Jye Lee, Yu-Hsuan Chen, Hungchen Emilie Yen
  75. ^ a b Plant Physiol. 2000 Apr;122(4):1129-36., "Removal of feedback inhibition of delta(1)-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress.", Hong Z, Lakkineni K, Zhang Z, Verma DP., PMID 10759508
  76. ^ Plant Mol Biol. 2007 Jul;64(4):371-86. Epub 2007 Apr 24., "Improved drought tolerance without undesired side effects in transgenic plants producing trehalose.", Karim S, Aronsson H, Ericson H, Pirhonen M, Leyman B, Welin B, Mäntylä E, Palva ET, Van Dijck P, Holmström KO., PMID 17453154
  77. ^ トレハロース-6-リン酸
  78. ^ Plant Biotechnol Rep (2007) 1:49-55, "Enhancement of salt tolerance in transgenic rice expressing an Escherichia coli catalase gene, katE", Kenji Nagamiya, Tsuyoshi Motohashi, Kimiko Nakao, Shamsul Haque Prodhan, Eriko Hattori, Sakiko Hirose, Kenjiro Ozawa, Yasunobu Ohkawa, Tetsuko Takabe, Teruhiro Takabe, Atsushi Komamine
  79. ^ Plant Biotechnol Rep. (2008) 2:41-46, "Overexpression of the Escherichia coli catalase gene, katE, enhances tolerance to salinity stress in the transgenic indica rice cultivar, BR5", Teppei Moriwaki, Yujirou Yamamoto, Takehiko Aida, Tatsuya Funahashi, Toshiyuki Shishido, Masataka Asada, Shamusul Haque Prodhan, Atsushi Komamine, Tsuyoshi Motohashi
  80. ^ nicotianamine
  81. ^ 3"-deamino-3"-oxonicotianamine
  82. ^ 2'-deoxymugineic acid
  83. ^ Nat Biotechnol. 2001 May;19(5):466-9., "Enhanced tolerance of rice to low iron availability in alkaline soils using barley nicotianamine aminotransferase genes.", Takahashi M, Nakanishi H, Kawasaki S, Nishizawa NK, Mori S., PMID 11329018
  84. ^ 鉄欠乏耐性イネ(HvNAS1, Oryza sativa L.) (gHvNAS1-1)申請書等の概要
  85. ^ 鉄欠乏耐性イネ(HvNAAT-A, HvNAAT-B, Oryza sativa L.) (gHvNAAT1)申請書等の概要
  86. ^ 鉄欠乏耐性イネ(HvIDS3, Oryza sativa L.) (gHvIDS3-1)申請書等の概要
  87. ^ Plant Cell. 2006 Aug;18(8):2035-50., "Functional replacement of ferredoxin by a cyanobacterial flavodoxin in tobacco confers broad-range stress tolerance.", Tognetti VB, Palatnik JF, Fillat MF, Melzer M, Hajirezaei MR, Valle EM, Carrillo N., PMID 16829589, PMC 1533984.
  88. ^ Trends Biotechnol. 2008 Oct;26(10):531-7., "Combating stress with flavodoxin: a promising route for crop improvement.", Zurbriggen MD, Tognetti VB, Fillat MF, Hajirezaei MR, Valle EM, Carrillo N., PMID 18706721.
  89. ^ Plant J. 2011 Mar;65(6):922-35., "Cyanobacterial flavodoxin complements ferredoxin deficiency in knocked-down transgenic tobacco plants.", Blanco NE, Ceccoli RD, Segretin ME, Poli HO, Voss I, Melzer M, Bravo-Almonacid FF, Scheibe R, Hajirezaei MR, Carrillo N., PMID 21205028.
  90. ^ 情報:農業と環境 No.97 (2008年5月1日), "GMO情報: 除草剤耐性品種でなぜ収量が増えるのか?", 独立行政法人 農業環境技術研究所
  91. ^ Planta, vol. 222, No. 3, p. 484-493, October 2005, "Expression of hepatitis B surface antigen in transgenic banana plants.", Kumar GB, Ganapathi TR, Revathi CJ, Srinivas L, Bapat VA., PMID 15918027
  92. ^ stearoyl-CoA
  93. ^ oleoyl-CoA
  94. ^ Δ9-desaturase
  95. ^ 高オレイン酸ダイズ(GmFad2-1, Glycine max (L.) Merr.)(260-05, OECD UI :DD- Ø26ØØ5-3) 申請書等の概要
  96. ^ 低飽和脂肪酸・高オレイン酸及び除草剤グリホサート耐性ダイズ(GmFAD2-1A, GmFATB1A, 改変cp4 epsps, Glycine max (L.) Merr.)(MON87705, OECD UI: MON-877Ø5-6)申請書等の概要
  97. ^ linoleoyl-CoA
  98. ^ γ-linolenoyl-CoA
  99. ^ stearidonoyl-CoA
  100. ^ α-linolenoyl-CoA
  101. ^ ステアリドン酸産生及び除草剤グリホサート耐性ダイズ(改変Pj.D6D, 改変Nc.Fad3, 改変cp4 epsps, Glycine max (L.) Merr.)(MON87769×MON89788, OECD UI:MON-87769-7×MON-89788-1)申請書等の概要
  102. ^ 生物多様性影響評価書の概要
  103. ^ 高リシン(lysine)トウモロコシ(cordapA, Zea mays subsp. mays (L.) Iltis)(LY038, OECD UI: REN-ØØØ38-3)の生物多様性影響評価書の概要
  104. ^ 国際アグリバイオ事業団(ISAAA)アグリバイオ最新情報【2012年8月31日】”. 日経バイオテクオンライン (2012年9月13日). 2018年4月13日閲覧。
  105. ^ a b c Paine, Jacqueline A.; Shipton, Catherine A.; Chaggar, Sunandha; Howells, Rhian M.; Kennedy, Mike J.; Vernon, Gareth; Wright, Susan Y.; Hinchliffe, Edward et al. (2005-04). “Improving the nutritional value of Golden Rice through increased pro-vitamin A content” (英語). Nature Biotechnology 23 (4): 482–487. doi:10.1038/nbt1082. ISSN 1546-1696. https://www.nature.com/articles/nbt1082. 
  106. ^ a b ゴールデンライス”. 光合成事典. 日本光合成学会. 2023年3月5日閲覧。
  107. ^ Hirschberg, Joseph (2001-06-01). “Carotenoid biosynthesis in flowering plants” (英語). Current Opinion in Plant Biology 4 (3): 210–218. doi:10.1016/S1369-5266(00)00163-1. ISSN 1369-5266. https://www.sciencedirect.com/science/article/pii/S1369526600001631. 
  108. ^ The science behind Golden Rice”. www.goldenrice.org. 2023年3月5日閲覧。
  109. ^ Patents for Humanity Awards Ceremony at the White House”. IP Watchdog Blog (2015年4月20日). 2020年2月24日閲覧。
  110. ^ US FDA approves GMO Golden Rice as safe to eat | Genetic Literacy Project” (英語). geneticliteracyproject.org. 2018年5月30日閲覧。
  111. ^ GM米 商業栽培認可 フィリピンで世界初」『日本農業新聞』日本農業新聞、2021年8月1日。2023年3月6日閲覧。
  112. ^ PLoS One. 2007 Apr 4;2(4):e350., "Metabolic engineering of potato carotenoid content through tuber-specific overexpression of a bacterial mini-pathway.", Diretto G, Al-Babili S, Tavazza R, Papacchioli V, Beyer P, Giuliano G., PMID 17406674, PMC 1831493.
  113. ^ BMC Plant Biol. 2006 Jun 26;6:13., "Metabolic engineering of potato tuber carotenoids through tuber-specific silencing of lycopene epsilon cyclase.", Diretto G, Tavazza R, Welsch R, Pizzichini D, Mourgues F, Papacchioli V, Beyer P, Giuliano G., PMID 16800876, PMC 1570464.
  114. ^ BMC Plant Biol. 2007 Mar 2;7:11, "Silencing of beta-carotene hydroxylase increases total carotenoid and beta-carotene levels in potato tubers.", Diretto G, Welsch R, Tavazza R, Mourgues F, Pizzichini D, Beyer P, Giuliano G., PMID 17335571, PMC 1828156.
  115. ^ Plant Cell Rep. 2007 Jan;26(1):61-70., "Increased alpha-tocopherol content in soybean seed overexpressing the Perilla frutescens gamma-tocopherol methyltransferase gene.", Tavva VS, Kim YH, Kagan IA, Dinkins RD, Kim KH, Collins GB., PMID 16909228
  116. ^ Nature Biotechnology 26, 1301 - 1308 (2008), "Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors", Eugenio Butelli, Lucilla Titta, Marco Giorgio, Hans-Peter Mock, Andrea Matros, Silke Peterek, Elio G W M Schijlen, Robert D Hall, Arnaud G Bovy, Jie Luo & Cathie Martin
  117. ^ 日本学術振興会植物バイオ第160委員会 (2009-03). 救え!世界の食料危機: ここまできた遺伝子組換え作物. 化学同人. ISBN 9784759811728. https://books.google.co.jp/books/about/%25E6%2595%2591%25E3%2581%2588_%25E4%25B8%2596%25E7%2595%258C%25E3%2581%25AE%25E9%25A3%259F%25E6%2596%2599%25E5%258D%25B1%25E6%25A9%259F.html?id=_Ep8-wztmlgC&printsec=frontcover&source=kp_read_button&redir_esc=y#v=onepage&q&f=false 
  118. ^ H2
  119. ^ Nat Biotechnol. 1999 Mar;17(3):282-6., "Iron fortification of rice seed by the soybean ferritin gene.", Goto F, Yoshihara T, Shigemoto N, Toki S, Takaiwa F., PMID 10096297
  120. ^ Planta. 2005 Oct;222(2):225-33. Epub 2005 Apr 9., "Iron accumulation does not parallel the high expression level of ferritin in transgenic rice seeds.", Qu le Q, Yoshihara T, Ooyama A, Goto F, Takaiwa F., PMID 15821927
  121. ^ 「鉄分3倍含むコメ開発、貧血解消にも効果期待」, 2010年1月14日, 読売新聞
  122. ^ 「鉄分3倍のイネ開発 東大など 遺伝子組み換えで」, 米山正寛, 2010年2月16日, 科学面, 朝日新聞
  123. ^ Transgenic Res. 2008 Aug;17(4):633-43. Epub 2007 Oct 12., "Transgenic maize plants expressing a fungal phytase gene.", Chen R, Xue G, Chen P, Yao B, Yang W, Ma Q, Fan Y, Zhao Z, Tarczynski MC, Shi J., PMID 17932782
  124. ^ Poult Sci. 2008 Oct;87(10):2015-22., "Corn expressing an Escherichia coli-derived phytase gene: comparative evaluation study in broiler chicks.", Nyannor EK, Adeola O., PMID 18809864
  125. ^ Poult Sci. 2009 Jul;88(7):1413-20., "Corn expressing an Escherichia coli-derived phytase gene: residual phytase activity and microstructure of digesta in broiler chicks.", Nyannor EK, Bedford MR, Adeola O., PMID 19531712
  126. ^ Plant Mol Biol. 2005 Dec;59(6):869-80., "Endosperm-specific co-expression of recombinant soybean ferritin and Aspergillus phytase in maize results in significant increases in the levels of bioavailable iron.", Drakakaki G, Marcel S, Glahn RP, Lund EK, Pariagh S, Fischer R, Christou P, Stoger E., PMID 16307363
  127. ^ 農業と環境 No.121 (2010年5月1日), "GMO情報: ヨーロッパのポテト―商業栽培と試験栽培の承認", 白井洋一, 独立行政法人 農業環境技術研究所
  128. ^ Plant Physiol. 1998 April; 116(4): 1219-1225., "Cyanogenesis in Cassava The Role of Hydroxynitrile Lyase in Root Cyanide Production", Wanda L.B. White, Diana I. Arias-Garzon, Jennifer M. McMahon, and Richard T. Sayre, PMC 35028, open access
  129. ^ PLoS ONE 6(7), (2011): e21996. doi:10.1371/journal.pone.0021996, "Overexpression of Hydroxynitrile Lyase in Cassava Roots Elevates Protein and Free Amino Acids while Reducing Residual Cyanogen Levels.", Narayanan NN, Ihemere U, Ellery C, Sayre RT, open access
  130. ^ Proc Natl Acad Sci U S A. 2006 Nov 28;103(48):18054-9, "Engineering cottonseed for use in human nutrition by tissue-specific reduction of toxic gossypol.", Sunilkumar G, Campbell LM, Puckhaber L, Stipanovic RD, Rathore KS., PMID 17110445, PMC 1838705.
  131. ^ Plant Biotechnol J. 2012 Feb;10(2):174-83, "Ultra-low gossypol cottonseed: generational stability of the seed-specific, RNAi-mediated phenotype and resumption of terpenoid profile following seed germination.", Rathore KS, Sundaram S, Sunilkumar G, Campbell LM, Puckhaber L, Marcel S, Palle SR, Stipanovic RD, Wedegaertner TC., PMID 21902797.
  132. ^ Plant Biotechnol J. 2008 Oct;6(8):843-53., "Low-acrylamide French fries and potato chips.", Rommens CM, Yan H, Swords K, Richael C, Ye J., PMID 18662372, PMC 2607532
  133. ^ a b Plant Biotechnol J. 2012 10(8):913-924, "Tuber-specific silencing of asparagine synthetase-1 reduces the acrylamide-forming potential of potatoes grown in the field without affecting tuber shape and yield.", Chawla R, Shakya R, Rommens CM, abstract
  134. ^ Official Journal of the European Communities 17.4.2001, "DIRECTIVE 2001/18/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 12 March 2001 on the deliberate release into the environment of genetically modified organisms and repealing Council Directive 90/220/EEC
  135. ^ Plant Biotechnology Journal, Vol. 11, p. 516-525, May 2013, "A novel dominant selectable system for the selection of transgenic plants under in vitro and greenhouse conditions based on phosphite metabolism", Damar L. Lopez-Arredondo and Luis Herrera-Estrella
  136. ^ The Plant Journal (2007) 52, p. 157-166, "Molecular breeding of a novel herbicide-tolerant rice by gene targeting.", Endo M, Osakabe K, Ono K, Handa H, Shimizu T, Toki S., PMID 17883686
  137. ^ Plant Physiology, June 2007, Vol. 144, pp. 846-856, "Gene targeting by homologous recombination as a biotechnological tool for rice functional genomics.", Terada R, Johzuka-Hisatomi Y, Saitoh M, Asao H, Iida S., PMID 17449652
  138. ^ Nature, 2009 May 21;459(7245):442-5, "High-frequency modification of plant genes using engineered zinc-finger nucleases.", Townsend JA, Wright DA, Winfrey RJ, Fu F, Maeder ML, Joung JK, Voytas DF, PMID 19404258, PMC 2743854.
  139. ^ Nature. 2009 May 21;459(7245):437-41, "Precise genome modification in the crop species Zea mays using zinc-finger nucleases.", Shukla VK, Doyon Y, Miller JC, DeKelver RC, Moehle EA, Worden SE, Mitchell JC, Arnold NL, Gopalan S, Meng X, Choi VM, Rock JM, Wu YY, Katibah GE, Zhifang G, McCaskill D, Simpson MA, Blakeslee B, Greenwalt SA, Butler HJ, Hinkley SJ, Zhang L, Rebar EJ, Gregory PD, Urnov FD, PMID 19404259
  140. ^ Methods Mol Biol, 2012;847:391-7, "Targeting DNA to a previously integrated transgenic locus using zinc finger nucleases.", Strange TL, Petolino JF, PMID 22351024
  141. ^ Plant J. 2000 Oct;24(2):265-73., "Technical advance: An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants.", Zuo J, Niu QW, Chua NH., PMID 11069700
  142. ^ Nat Biotechnol. 2001 Feb;19(2):157-61., "Chemical-regulated, site-specific DNA excision in transgenic plants.", Zuo J, Niu QW, Møller SG, Chua NH., PMID 11175731
  143. ^ Methods Mol Biol. 2006;323:329-42., "Applications of chemical-inducible expression systems in functional genomics and biotechnology.", Zuo J, Hare PD, Chua NH., PMID 16739588
  144. ^ Plant J. 1999 Jul;19(1):87-95., "Technical advance: transcriptional activator TGV mediates dexamethasone-inducible and tetracycline-inactivatable gene expression ", Bohner S, Lenk I I, Rieping M, Herold M, Gatz C., PMID 10417730
  145. ^ Mol Gen Genet. 2001 Feb;264(6):860-70., "Characterisation of novel target promoters for the dexamethasone-inducible/tetracycline-repressible regulator TGV using luciferase and isopentenyl transferase as sensitive reporter genes.", Böhner S, Gatz C., PMID 11254134
  146. ^ Plant Biotechnol J. 2007 Mar;5(2):263-274., "'GM-gene-deletor': fused loxP-FRT recognition sequences dramatically improve the efficiency of FLP or CRE recombinase on transgene excision from pollen and seed of tobacco plants.", Luo K, Duan H, Zhao D, Zheng X, Deng W, Chen Y, Stewart CN Jr, McAvoy R, Jiang X, Wu Y, He A, Pei Y, Li Y., PMID 17309681
  147. ^ 5’-CGTAAATTATAAATCTTAAATATCAAAGTT ACATGTTATATATGGTTAAAAATCATTTAA ATGTTACATAGTTTTAAGAACTTTTATATT GTAACTTTAGGGTATACTCTAAAATAACA-3’
  148. ^ Plant Mol Biol. 2011 Apr;75(6):621-31. Epub 2011 Feb 2, "Transgene excision in pollen using a codon optimized serine resolvase CinH-RS2 site-specific recombination system.", Moon HS, Abercrombie LL, Eda S, Blanvillain R, Thomson JG, Ow DW, Stewart CN Jr., PMID 21359553
  149. ^ Plant Mol Biol. 2010 Apr;72(6):673-87., "Transgene excision from wheat chromosomes by phage phiC31 integrase.",Kempe K, Rubtsova M, Berger C, Kumlehn J, Schollmeier C, Gils M., PMID 20127141
  150. ^ 日本での利用状況”. バイテク情報普及会. 2021年3月25日閲覧。
  151. ^ 遺伝子組換え食品(種子植物)の安全性評価基準
  152. ^ 遺伝子組換え飼料及び飼料添加物の安全性評価の考え方
  153. ^ a b c d 『遺伝子組み換え作物、事実上の勝利 安全性への懸念をよそに栽培農家は世界中で急増』2007年12月17日付配信 日経ビジネスオンライン
  154. ^ 農林水産政策研究所レビューNo.21(2006年10月16日), 巻頭言, "BSE・大豆・アマゾン", 石 弘之, 農林水産政策研究所レビュー
  155. ^ a b c 『“遺伝子組み換え作物”中国進む技術開発 コメ商業栽培もう一歩』2007年10月29日付配信 産経新聞
  156. ^ 平成21年耕地面積(7月15日現在)
  157. ^ Recent Trends in GE Adoption, Adoption of Genetically Engineered Crops in the U.S., Last updated: Monday, July 14, 2014
  158. ^ GMO Crops, Animal Food, and Beyond”. U.S.FOOD & DRUGS ADMINISTRATION(アメリカ食品医薬品局). 2021年3月29日閲覧。
  159. ^ a b c d e f g Genetically modified plants: Global Cultivation Area Soybean
  160. ^ a b c d e Genetically modified plants: Global Cultivation Area Maize
  161. ^ a b c d e f Genetically modified plants: Global Cultivation Area Cotton
  162. ^ Acreage 2008
  163. ^ Acreage 2009
  164. ^ Acreage 2010
  165. ^ Acreage 2011
  166. ^ Acreage 2012
  167. ^ Acreage 2013
  168. ^ Acreage 2014
  169. ^ Genetically modified plants: Global Cultivation Area Rapeseed
  170. ^ ブラジルにおける遺伝子組換え(GM)作物の栽培許可をめぐる経緯, 犬塚 明伸、横打 友恵、月報「畜産の情報」(海外編), 2005年10月, 独立行政法人 農畜産業振興機構
  171. ^ ISAAA Series of Biotech Crop Profiles: Bt Cotton in India: A Country Profile, Bhagirath Choudhary and Kadambini Gaur著, July 2010, ISBN 978-1-89245646-5.
  172. ^ Adoptation and impact of Bt cotton in India, 2002 to 2010, Bhagirath Choudhary and Kadambini Gaur著
  173. ^ Socio-Economic and Farm Level Impact of Bt Cotton in India, Bhagirath Choudhary and Kadambini Gaur著
  174. ^ pnas.1203647109, "Economic impacts and impact dynamics of Bt (Bacillus thuringiensis) cotton in India", Jonas Kathage and Matin Qaim, PNAS, July 2, 2012
  175. ^ Genetically modified cotton gets high marks in India, Engineered plants increased yields and profits relative to conventional varieties, Gayathri Vaidyanathan, Nature | News, 03 July 2012
  176. ^ 北海道遺伝子組換え作物の栽培等による交雑等の防止に関する条例, 平成17年3月31日北海道条例第10号, 改正平成21年3月31日北海道条例第15号
  177. ^ 農林水産物輸出入状況2008年(平成20年)確定値平成21年4月10日 平成21年10月1日訂正 農林水産省 国際部国際政策課
  178. ^ 遺伝子組換え作物 -世界の動向と今後の日本の展望-, 三石誠司, 財団法人 報農会, 掲載誌名:植物ハイビジョン-2008 -遺伝子組換え作物の現状と課題-, p.49-57
  179. ^ 「講師の三石誠司・宮城大学教授は、大豆やトウモロコシなど輸入穀物の半分を遺伝子組み換え農産物が占めている現状を解説。」 遺伝子組み換えに賛否 新潟で農水省農産物シンポ 新潟日報2009年9月17日
  180. ^ 日本での利用状況”. バイテク情報普及会. 2021年3月31日閲覧。
  181. ^ ”遺伝子組換え作物の社会的便益の評価に関する研究-遺伝子組換え作物の日本経済への貢献度の計測-”、バイテク情報普及会研究報告書、東京大学大学院農学生命科学研究科、本間正義、齋藤勝宏、2016年9月30日、2021年3月31日閲覧。 https://cbijapan.com/wp-content/themes/cbijapan/pdf/2017031401CBIJ.pdf
  182. ^ 日本農林規格等に関する法律(JAS法)
  183. ^ 遺伝子組換えに関する表示に係る加工食品品質表示基準第7条第1項及び生鮮食品品質表示基準第7条第1項の規定に基づく農林水産大臣の定める基準, (平成12年3月31日 農林水産省告示第517号、最終改正平成23年8月31日消費者庁告示第9号)
  184. ^ 食品衛生法
  185. ^ a b c d e f g h i j k l 食品表示に関する共通Q&A(第3集:遺伝子組換え食品に関する表示について)
  186. ^ 酒類における有機等の表示基準を定める件, 平成12年12月26日 国税庁告示第7号, 改正 平成20年7月 国税庁告示第22号 、平成27年10月国税庁告示第19号、令和元年6月国税庁告示第7号
  187. ^ 食品衛生法第19条第1項の規定に基づく表示の基準に関する内閣府令等の施行について, (消食表第370号 平成23年8月31日)
  188. ^ a b 大豆加工品の「国産大豆使用」表示等に関する特別調査の結果について
  189. ^ バルク輸送非GMO流通マニュアル(とうもろこし・大豆)
  190. ^ バルク輸送非GMO流通マニュアル(ばれいしょ)
  191. ^ 科学的手法を用いて実施した食品の品質表示実施状況調査の結果について(平成21年度), 平成22年12月28日 独立行政法人 農林水産消費安全技術センター
  192. ^ Regulation No 1830/2003 concerning the traceability and labelling of genetically modified organisms and the traceability of food and feed products produced from genetically modified organisms
  193. ^ Questions and answers on the regulation of GMOs in the European Union (October 2005)
  194. ^ 遺伝子組換え樹木/遺伝子組換え作物をめぐる諸外国の政策動向、第6章 EUにおける遺伝子組換え食品等の表示制度及び実施状況について 大臣官房情報評価課 平形和世、平成21年3月 農林水産政策研究所
  195. ^ 有機農産物の日本農林規格制定平成12年1月20日農林水産省告示第59号 一部改正平成15年11月18日農林水産省告示第1884号 全部改正平成17年10月27日農林水産省告示第1605号 一部改正平成21年8月27日農林水産省告示第1180号 一部改正平成24年3月28日農林水産省告示第833号 一部改正平成27年12月3日農林水産省告示第2597号 一部改正平成28年2月24日農林水産省告示第489号 最終改正平成29年3月27日農林水産省告示第443号
  196. ^ 有機農産物及び有機加工食品のJAS規格のQ&A平成28年7月 農林水産省 食料産業局 食品製造課
  197. ^ 農業環境技術研究所資料 第27号, "欧州農業における遺伝子組換え作物、一般栽培作物および有機栽培作物の共存のためのシナリオ", 欧州委員会共同研究センター予測技術研究所 著, 廉澤 敏弘 中谷 敬子 訳, ISSN 0912-7542, 平成15年9月, 農業環境技術研究所
  198. ^ NEDO海外レポート NO.1047, 2009.7.01, "【ライフサイエンス・バイオテクノロジー特集】 遺伝子組換え作物の栽培方法に関する規制レポート(EU)", 編集:久我 健二郎、原訳:吉野 晴美, NEDO
  199. ^ Official Journal of the European Union 22.7.2010, "COMMISSION RECOMMENDATION of 13 July 2010 on guidelines for the development of national co-existence measures to avoid the unintended presence of GMOs in conventional and organic crops"
  200. ^ Coexistence in the countries of the EU: A European patchwork, GMO Safety.eu
  201. ^ EU report on national coexistence measures: Coexistence to continue to be regulated by member states for the time being, GMO Safety.eu
  202. ^ 遺伝子組換え樹木/遺伝子組換え作物をめぐる諸外国の政策動向、第2部 遺伝子組換え作物に関する諸動向、第4章 欧州委員会における遺伝子組換え作物をめぐる共存政策の動向、茨城大学農学部 立川雅司、平成21年3月 農林水産政策研究所
  203. ^ 海外駐在員情報、欧州委、遺伝子組換作物の栽培を許可、制限または禁止できる権限を加盟国に付与する規則を提案、ブリュッセル駐在員 前間 聡 平成22年7月16日発、独立行政法人 農畜産業振興機構
  204. ^ a b 平成26年度 環境省請負業務 遺伝子組換え生物による影響監視調査 報告書
  205. ^ 「平成27年度遺伝子組換え植物実態調査」の結果について
  206. ^ 「ほ場で遺伝子組換えダイズとツルマメが交雑する可能性は低い」, リサーチプロジェクト名:遺伝子組換え生物生態影響リサーチプロジェクト, 研究担当者:生物多様性研究領域 吉村泰幸、水口亜樹、松尾和人, 平成18年度 研究成果情報(第23集), 農業環境技術研究所
  207. ^ Weed Biology and Management, March 2009; 9(1):93-6, "Flowering phenologies and natural hybridization of genetically modified and wild soybeans under field conditions", AKI MIZUGUTI, YASUYUKI YOSHIMURA and KAZUHITO MATSUO, DOI: 10.1111/j.1445-6664.2008.00324.x
  208. ^ Nature 399, 214 (1999), "Transgenic pollen harms monarch larvae", JOHN E. LOSEY, LINDA S. RAYOR & MAUREEN E. CARTER, PMID 10353241
  209. ^ p. 818, 左側下から18行目から4行目まで, chapter 38 Angiosperm Reproduction and Biotechnology, BIOLOGY Eighth Edition, Neil A. Campbell, Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson, Pearson Education, Inc., (2008), ISBN 978-0-321-53616-7/0-321-53616-9
  210. ^ 松尾和人, 吉村泰幸「遺伝子組み換え作物の栽培国および輸入国における雑草問題」『日本作物学会紀事』第84巻、2015年、1頁。 
  211. ^ Vencill, W.K., R.L. Nichols, T.M. Webster, J.K. Soteres, C. Mallory-Smith, N.R. Burgos, W.G. Johnson and M.R. McClelland (2012). “Herbicide Resistance: Toward an Understanding of Resistance Development and the Impact of Herbicide-Resistant Crops”. WSAA Weed Science Special Issue:2-30: 15. https://www.cambridge.org/core/services/aop-cambridge-core/content/view/1A9433257A97A1C8416B7AFB3A8BC61A/S004317450002186Xa.pdf/herbicide_resistance_toward_an_understanding_of_resistance_development_and_the_impact_of_herbicideresistant_crops.pdf#page=15. 
  212. ^ Livingston, M., J. Fernandez-Cornejo, J. Unger, C. Osteen, D. Schimmelpfennig, T. Park and D. Lambert (2015). “The Economics of Glyphosate Resistance Management in Corn and Soybean Production”. Economic Research Report U.S. Department of Agriculture No. ERR-184: 7. https://www.ers.usda.gov/webdocs/publications/45354/52761_err184.pdf?v=42207#page=7. 
  213. ^ CENTER FOR FOOD SAFETY,Monsant vs. U.S. Farmers monsanto, 2007
  214. ^ Evidence of the Magnitude and Consequences of the Roundup Ready Soybean Yield Drag from University-Based Varietal Trials in 1998, Dr. Charles Benbrook, Benbrook Consulting Services, Sandpoint, Idaho
  215. ^ A Meta-Analysis of the Impacts of Genetically Modified Crops, Wilhelm Klümper and Matin Qaim, PLOS ONE, Published: November 03, 2014, DOI: 10.1371/journal.pone.0111629
  216. ^ Table S3. Weighted mean impacts of GM crop adoption.
  217. ^ p.181, 遺伝子組換え食品―どこが心配なのですか?, 著者 アラン マキュアン(Alan McHaghen), 翻訳 渡辺 正 および 久村 典子, 出版社 丸善, 2002年7月 初版, ISBN 978-4621070635
  218. ^ 農業と環境 No.133 (2011年5月1日), "GMO情報: 進まぬ新規形質作物の実用化、原因は消費者意識か審査のハードルか", 白井洋一、独立行政法人 農業環境技術研究所
  219. ^ 農業と環境 No.118 (2010年2月1日), "GMO情報: ウイルス病抵抗性パパイヤ、承認までの長い道のり", 白井洋一、独立行政法人 農業環境技術研究所
  220. ^ a b c d e 伊藤成朗「多国籍種苗企業の国際展開 (特集 発展途上国と知的財産権--経済学的アプローチ)」『アジア経済』第45巻第11/12号、日本貿易振興機構アジア経済研究所、2004年11月、49-79頁、ISSN 00022942NAID 120000808691 
  221. ^ 週報「海外駐在員情報」平成17年4月12日号(通巻668号), "アルゼンチンにおけるGM大豆の特許料支払い問題", 犬塚 明伸、独立行政法人 農畜産業振興機構
  222. ^ 週報「海外駐在員情報」平成17年8月2日号(通巻683号), "RR大豆の特許料支払い問題、再燃(アルゼンチン)", 犬塚 明伸、独立行政法人 農畜産業振興機構
  223. ^ Docket: T-1593-98, Neutral Citation: 2001 FCT 256, MONSANTO CANADA INC. and MONSANTO COMPANY Plaintiffs and PERCY SCHMEISER and SCHMEISER ENTERPRISES LTD. Defendants, カナダ連邦裁判所判決文
  224. ^ Monsanto Canada Inc. v. Schmeiser (C.A.) (2003)2 F.C. 165, カナダ連邦控訴裁判所判決文
  225. ^ Monsanto Canada Inc. v. Schmeiser, (2004) 1 S.C.R. 902, 2004 SCC 34, カナダ最高裁判所判決文
  226. ^ "In India, the introduction of GMO Bt cotton seed increased costs by 8000%, locked farmers in debt ,and pushed them to suicide. More than 270000 Indian farmers have committed suicide due to debt created by high cost seeds and chemicals. And most suicides are concentrated in the cotton belt.", Prop 37-vital for Food Democracy
  227. ^ Nature | News Feature, Vol. 497, 02 May (2013), Natasha Gilbert, GM cotton has driven farmers to suicide: False, Case studies: A hard look at GM crops
  228. ^ ビタミンA欠乏症 目標 ビタミンA欠乏症を撲滅する。, UNICEF
  229. ^ "An estimated 250 million preschool children are vitamin A deficient and it is likely that in vitamin A deficient areas a substantial proportion of pregnant women is vitamin A deficient.","An estimated 250 000 to 500 000 vitamin A-deficient children become blind every year, half of them dying within 12 months of losing their sight.", A few salient facts
  230. ^ Global prevalance of vitamin A deficiency in populations at risk 1995-2005, WHO Global Database on Vitamin A Deficiency, Authors: World Health Organization, Number of pages: 55, Publication date: 2009, Languages: English, ISBN 978-92-4-159801-9
  231. ^ golden Rice Project
  232. ^ p. 52, 4-10行, 「ゆっくりノートブック1 SLOW FOOD, IT'S ABOUT TIME! そろそろスローフード 〜今、何をどう食べるのか?」, 島村菜津・辻 信一 共著, 発行所 株式会社 大月書店, 2008年6月20日 第1刷発行, ISBN 978-4-272-32031-8-C0336
  233. ^ 第2章 五訂増補日本食品標準成分表(本表), 果実類, リンゴ(生)の可食部100 g当たりレチノール当量 2 μg
  234. ^ 国別WID情報整備調査、インド India : Country WID Profile、平成10年3月 国際協力事業団 企画部、p. 6の下から2行からp. 7の1行目「世帯の経済状態により栄養を摂取できる機会が異なり、家庭内では性別により栄養の配分に差異が生じている。女性は貧困家庭ほど栄養状況が悪い。インドで特に不足している栄養素は、ヨウ素とビタミン A である。」
  235. ^ [8][9][10]
  236. ^ 第2章 五訂増補日本食品標準成分表(本表), 穀類
  237. ^ 名和義彦・大谷俊郎:有色素米の色素特性,食品工業,11月30日号,28-33(1991)
  238. ^ J Med Food. 2001 Winter;4(4):211-218., "Antioxidant Activity of Anthocyanin Extract from Purple Black Rice.", Ichikawa H, Ichiyanagi T, Xu B, Yoshii Y, Nakajima M, Konishi T., PMID 12639403
  239. ^ 農業と環境 No. 88(2007.8), GMO情報: ビタミンA強化米 ゴールデンライスの開発阻害要因, 独立行政法人農業環境技術研究所
  240. ^ Regulated to blindness and death
  241. ^ HarvestPlus Technical Monograph 4. (2005), Analyzing the health benefits of biofortified staple crops by means of the disability-adjusted life years approach: a handbook focusing on iron, zinc and vitamin A., Alexander J. Stein, J.V. Meenakshi, Matin Qaim, Penelope Nestel, H.P.S. Sachdev and Zulfiqar A. Bhutta
  242. ^ Scientific American, March 15, 2014, "Golden Rice Opponents Should Be Held Accountable for Health Problems Linked to Vitamin A Deficiency", David Ropeik
  243. ^ Food Chem Toxicol. 2008 Mar;46 Suppl 1:S2-70. Epub 2008 Feb 13., "Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.", EFSA GMO Panel Working Group on Animal Feeding Trials., PMID 18328408
  244. ^ Regulatory Toxicology and Pharmacology 32, p. 156-173 (2000), "Safety and Advantages of Bacillus thuringiensis-Protected Plants to Control Insect Pests", Fred S. Betz, Bruce G. Hammond, and Roy L. Fuchs, PMID 11067772
  245. ^ NEJM., Volume 334, p.688-692, (1996),NEJM., "Identification of a Brazil-Nut Allergen in Transgenic Soybeans", Julie A. Nordlee, Steve L. Taylor, Jeffrey A. Townsend, Laurie A. Thomas, and Robert K. Bush
  246. ^ 農業と環境 No.98 (2008年6月1日)、"GMO情報: スターリンクの悲劇 〜8年後も残るマイナスイメージ〜", 独立行政法人 農業環境技術研究所
  247. ^ 遺伝子組換え植物の光と影 Ⅱ、監修者 佐野 浩、出版社 学会出版センター、2003年6月20日 初版、ISBN 4-7622-3014-6
  248. ^ Food and Chemical Toxicology 2004;42:p. 29-36, "A generational study of glyphosate-tolerant soybeans on mouse fetal, postnatal, pubertal and adult testicular development.", Brake DG, Evenson DP., PMID 14630127
  249. ^ 東京都健康安全研究センター情報誌 くらしの健康 第8号 (2005年6月)「生体影響試験が教えてくれること」
  250. ^ "「生体影響試験が教えてくれること」-緑茶抽出物及び遺伝子組み換え大豆の動物実験の結果から-", 知っておきたい暮らしの中の健康と安全, 東京都健康安全研究センター公開セミナー, 2004年度(平成16年度), 9月30日(木), 東京都庁都民ホール
  251. ^ the Lancet, Vol. 354, p. 1353-1354, (1999), "Effect of diets containing genetically modified potatoes expressing Galanthus nivalis lectin on rat small intestine", Stanley WB Ewen and Arpad Pusztai
  252. ^ [11]
  253. ^ the Lancet, Vol. 354, p. 1314-6, (1999),commentary, "Genetically modified foods: "absurd" concern or welcome dialogue?", Richard Horton
  254. ^ GM debate, Lancet, Vol. 354, Issue 9191, 13 November 1999, p. 1725-1729[12][13][14][15][16][17][18][19][20][21][22]
  255. ^ 平成22年度遺伝子組換え農作物等に関する意識調査報告書
  256. ^ Exploring attitudes to GM food Final Report





英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「遺伝子組み換え作物」の関連用語

遺伝子組み換え作物のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



遺伝子組み換え作物のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの遺伝子組み換え作物 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS