藤田スケール
別名:Fスケール
竜巻、ダウンバーストといった非常に強い突風について、被害状況から風の規模を推測する手法。
竜巻のような気象現象は、強い風により地上の樹木や構造物へ被害をもたらすが、水平方向の風の流れが小さく、通常の風速の計測方法では正しく計ることができないとされる。そこで、藤田スケールにより大まかな規模を計る方法が用いられている。
藤田スケールは1971年に考案・提唱された。2006年に改良版「改良藤田スケール」が発表されている。
藤田スケールでは規模が「F0」から「F5」まで6段階に、改良藤田スケールでは「EF0」から「EF5」までの6段階に分類されている。
「EF0」は小枝が折れる程度、「EF1」は屋根瓦が吹き飛ぶ程度、「EF3」は自動車が空中に巻き上げられる程度、最大規模の「EF5」では住家が吹き飛び、列車も宙を舞い、数トン規模の物体がどこからともなく降ってくる、とされる。
関連サイト:
藤田(F)スケールとは - 気象庁
ふじた‐スケール〔ふぢた‐〕【藤田スケール】
読み方:ふじたすけーる
竜巻による被害の規模の尺度。建物の損壊や木々の損傷の状態により、被害が軽微なものから甚大なものになるにしたがい、F0からF6まで7等級で表される。1971年、シカゴ大学の藤田哲也が提唱。Fスケール。→改良藤田スケール
[補説] 藤田スケール(気象庁による)
F0 | 17〜32m/s(約15秒間の平均) | テレビのアンテナなどの弱い構造物が倒れる。小枝が折れ、根の浅い木が傾くことがある。非住家が壊れるかもしれない。 |
F1 | 33〜49m/s(約10秒間の平均) | 屋根瓦が飛び、ガラス窓が割れる。ビニールハウスの被害甚大。根の弱い木は倒れ、強い木は幹が折れたりする。走っている自動車が横風を受けると、道から吹き落とされる。 |
F2 | 50〜69m/s(約7秒間の平均) | 住家の屋根がはぎとられ、弱い非住家は倒壊する。大木が倒れたり、ねじ切られる。自動車が道から吹き飛ばされ、汽車が脱線することがある。 |
F3 | 70〜92m/s(約5秒間の平均) | 壁が押し倒され住家が倒壊する。非住家はバラバラになって飛散し、鉄骨づくりでもつぶれる。汽車は転覆し、自動車はもち上げられて飛ばされる。森林の大木でも、大半折れるか倒れるかし、引き抜かれることもある。 |
F4 | 93〜116m/s(約4秒間の平均) | 住家がバラバラになって辺りに飛散し、弱い非住家は跡形なく吹き飛ばされてしまう。鉄骨づくりでもペシャンコ。列車が吹き飛ばされ、自動車は何十メートルも空中飛行する。1トン以上ある物体が降ってきて、危険この上もない。 |
F5 | 117〜142m/s(約3秒間の平均) | 住家は跡形もなく吹き飛ばされるし、立木の皮がはぎとられてしまったりする。自動車、列車などがもち上げられて飛行し、とんでもないところまで飛ばされる。数トンもある物体がどこからともなく降ってくる。 |
藤田スケール
- 分野:
- いろいろな風に関する用語
- 意味:
- 竜巻、マイクロバーストなどの強い風の尺度として世界的に用いられており、F0からF5の6段階に区分されている。
F0:17 ~32m/s
(約15 秒間の平均)テレビアンテナなどの弱い構造物が倒れる。小枝が折れ、根の浅い木が傾くことがある。非住家が壊れるかもしれない。 F1:33 ~49m/s
(約10 秒間の平均)屋根瓦が飛び、ガラス窓が割れる。ビニールハウスの被害甚大。根の弱い木は倒れ、強い木の幹が折れたりする。走っている自動車が横風を受けると、道から吹き落とされる。 F2:50 ~69m/s
(約7 秒間の平均)住家の屋根がはぎとられ、弱い非住家は倒壊する。大木が倒れたり、ねじ切られる。自動車が道から吹き飛ばされ、汽車が脱線することがある。 F3:70 ~92m/s
(約5 秒間の平均)壁が押し倒され住家が倒壊する。非住家はバラバラになって飛散し、鉄骨づくりでもつぶれる。汽車は転覆し、自動車が持ち上げられて飛ばされる。森林の大木でも、大半は折れるか倒れるかし、引き抜かれることもある。 F4:93 ~116m/s
(約4 秒間の平均)住家がバラバラになってあたりに飛散し、弱い非住家は跡形なく吹き飛ばされてしまう。鉄骨づくりでもペシャンコ。列車が吹き飛ばされ、自動車は何十メートルも空中飛行する。1 トン以上もある物体が降ってきて、危険この上もない。 F5:117 ~142m/s
(約3 秒間の平均)住家は跡形もなく吹き飛ばされるし、立木の皮がはぎとられてしまったりする。自動車、列車などが持ち上げられて飛行し、とんでもないところまで飛ばされる。数トンもある物体がどこからともなく降ってくる。 - 用例:
- ○○市では、「多数の住宅の屋根瓦が飛んだり屋根がはぎ取られた」「樹木が倒れたり折れていた」「自動車が横転した」等の被害状況から、竜巻の強度は藤田スケールでF2と推定される。
- 備考:
- 突風災害の調査報告で被害等の状況を示す参考値として用いる。
藤田スケール
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/06/12 01:54 UTC 版)
藤田スケール(ふじたスケール、英: Fujita scale)または藤田・ピアソン・スケール(Fujita-Pearson scale)は、竜巻(トルネード)の強さを評定するための尺度である。主に建築物や樹木などの被害状況に基づいて推定される。藤田スケールの公式な階級区分は、写真や映像を用いた検証のほか、状況に応じて、竜巻襲来後に地上に形成される渦巻き模様のパターン(サイクロイド状の跡)や気象レーダーのデータ、目撃者の証言、メディア報道や被害画像などを基に決定される。通称、Fスケール(F-Scale)とも呼ばれる。
背景
1971年、シカゴ大学教授(当時)の藤田哲也が、アメリカの暴風雨予測センター(Storm Prediction Center; SPC)の前身である国立暴風雨予報センター(National Severe Storms Forecast Center; NSSFC)の局長だったアレン・ピアソンと共に提唱した[1]。藤田とピアソンは、アメリカ海洋大気庁(NOAA)の国立トルネード・データベースに蓄積された1950年から1972年までのトルネード関連の報告書を遡って調査し、さらに歴史上有名な初期のトルネードについても研究の対象に入れて、藤田スケールへと応用させていった。また同じ頃、トマス・グラザリスによるトルネード・データベース化計画 (The Tornado Project) でも、1880年以降に米国で発生した全ての既知の重大なトルネード(F2~F5相当もしくは多数の死者が出た事例)の分類がなされた[2]。1973年には、トルネードの被害範囲の長さと幅が考慮されたスケールになった。アメリカ合衆国では1973年以降、トルネードの発生直後にその強さが評定されるようになった。
だが、藤田スケールはあくまで竜巻による被害の大きさを示したものであり、竜巻の厳密な風速を求める設計にはなっていなかったため、スケールでは階級ごとに風速が定義されているものの、実際の被害の程度と推定される風速が一致しないことも少なからずあった。藤田スケールでは、比較的強いトルネード(特にF3~F5)に対する風速の推定値が実際の風速より極端に高く評価されてしまうという欠点があった。これに関して、NOAAは「実際のところ、通常正確な風速とされる風速もやはり推定の風速であり、それが科学的に立証されることもない。推定風速と実際の風速が異なるということは、場所や建物によって被害に差が出るような程度のことである。仮に、藤田らによる竜巻の被害に関する一連の技術的な分析が行われていなかったとしたら、それこそ実際の風速は前例のない被害をもたらしていたかもしれない」[3]と言及した。その後、改良藤田スケール(Enhanced Fujita Scale:EF-Scale)が策定され、より正確な風速の推定が行われるようになった。
スケールの由来と発展

青:ビューフォート風力階級
赤:藤田スケール
緑:マッハ数
藤田が提唱したスケールの原型はF0からF12までの13階級であった。これは、ビューフォート風力階級やマッハ数との互換性を保つために考慮した上での措置であった。F1で定義された風速の範囲がビューフォート風力階級の風力12に対応する一方で、藤田スケールの最高階級であるF12の風速は、マッハ1.0に相当する(右図)。さらに、F0は被害がない状況を想定した階級である(なお、風速について言えば、おおよそビューフォート階級の風力8に相当する)。これと比較すると、ビューフォート階級の風力0の状態がいかに無風であるかについて理解できる。これらの風力値から、藤田スケールの階級ごとに充てられる、被害について記述した定性的な説明文が作成され、そして、それらの文章を用いてトルネードが分類される[4]。
藤田がトルネードのスケールを着想した当時、風によってもたらされる損害に関する情報はわずかであった。そのため、藤田のスケールが試みた具体的な被害状況の記述は経験的な推測による内容にすぎなかった。藤田は、現実に地球上で発生し得る竜巻の分類には、F0からF5までが実用的だろうと考えた[5]。しかしながら、将来的に竜巻の被害分析手法がさらに発展した暁に、藤田スケールが再び使用される可能性があることを見越して、「想像もつかないほどの竜巻(Inconceivable tornado)」としながらも、藤田はF6の定義を付け加えた[3]。
「非常に深刻なF5の竜巻被害」が記録されてきた一方で「F6」の概念に該当する規模の竜巻は公式には記録されていないが、1974年にオハイオ州ジーニアに被害をもたらした事例は「F6±1」と記載され[6]、1999年のオクラホマシティでの記録は最大風速が時速521kmで「F6」に該当するという意見も見られ[7]、2013年にオクラホマ州のエル・レノで発生した竜巻の最大風速は時速541kmだった(エル・レノは2011年にも最大風速が時速476kmの竜巻の被害があり、これら1999年・2011年・2013年の各竜巻は地球上で記録されてきた風速記録のワースト3である)[8][9]。2013年ムーア竜巻は改良藤田スケールが導入されて以降の最大記録の一つであり、上記の1999年の竜巻と威力や進路が類似している[10]。
藤田スケール階級表
以下、7つの階級を強度の低い方から順に示す。
階級 | 推定風速 | 相対度数 | 想定される被害 | |||
---|---|---|---|---|---|---|
mph | km/h | m/s | ||||
F0 | 73未満 | 117未満 | 32未満 | 38.9% | 被害は比較的軽微。煙突の損傷、木の枝が折れる、根の浅い木が傾く、道路標識の損傷など。 | ![]() |
F1 | 73–112 | 117–180 | 33–49 | 35.6% | 中程度の被害。屋根がはがされたり、自動車で引く移動住宅などは壊れたりひっくり返ったりする。移動中の自動車は道から押し出される。壁続きのガレージは破壊される。 | ![]() |
F2 | 113–157 | 181–253 | 50–69 | 19.4% | 大きな被害。家の壁ごと屋根が飛び、強度の弱い木造住宅や移動住宅などは破壊され、貨車は脱線したりひっくり返ったりし、大木でも折れたり根から倒れたりする。軽いものはミサイルのように飛び、車は横転したり数十メートル程度飛んだりする。 | ![]() |
F3 | 158–206 | 254–332 | 70–92 | 4.9% | 重大な被害。建て付けの良い家でも屋根と壁が吹き飛ぶ。列車は脱線転覆、森の大半の木は引っこ抜かれ、ダンプカーなどの重い車でも地面から浮いて飛んだりする。 | ![]() |
F4 | 207–260 | 333–418 | 93–116 | 1.1% | 深刻な大被害。建て付けの良い家でも基礎が弱いものはちょっとした距離を飛んでいき、車は大きなミサイルのように飛んでいく。 | ![]() |
F5 | 261–318 | 419–512 | 117–141 | 0.1%未満 | あり得ないほどの甚大な壊滅的被害。強固な建造物も基礎ごと吹き飛んでいってしまい、自動車大の物がミサイルとなって数百メートルを超過して空を飛び交い、どこからともなく大型トラックが降ることもある。樹木も根こそぎ宙を舞い、とにかく信じられないような大惨事になる。 | ![]() |
F6 | 319–379 | 513–610 | 142–169 | ほぼ皆無 | 仮に発生するようなことがあるならば、未曽有の超壊滅的な被害が予想される。この階級以上の竜巻の発生率は全体から見ても極々
|
改良藤田スケール
1971年に導入され、数々のトルネードを分類してきた藤田スケールは経験的推測に頼る部分が大きかった。藤田とその研究仲間たちは、導入後すぐにその不備を認めて、徹底的な技術的分析に乗り出した。この研究によって、藤田スケールで定義された各階級の損害に相当する風速は、実際には藤田スケールで示したものより低いことが判明した。また、藤田スケールにおける、風速による竜巻の被害想定は一般的家屋を想定していたが、低い風速でも建築物に大きな損害を与えることが考えられ、建築物の強度などの要因に対する考察は不完全なままであった。この問題に対処するべく、藤田は1992年に修正藤田スケール(Modified Fujita Scale)を発表した。しかしながら、同年、藤田はシカゴ大学の教授職を退いており、また米国気象局(NWS)も藤田の修正したこの新しいスケールへの移行を引き受けるような立場にはなかったため、修正藤田スケールが世に広まることはついになかった。
アメリカ合衆国では、より正確な改良藤田スケール(Enhanced Fujita scale, EF-Scale, EFスケール)を支持する意向を示す科学者が増えてきたこともあって、2007年2月1日にFスケールはその役目を終え、EFスケールに取って代わられた。カナダでは、同国の環境に合わせて修正を加えたカナダ版改良藤田スケールが導入され、2013年4月1日から運用を始めた[11]。EFスケールは多くの点でFスケールを改良したものだとされており、特に、建造物の種類によって異なる被害の程度などが、明確に示されるようになったことが改善点の一つに挙げられる。Fスケールでは多少曖昧だった損害の程度の規格化によって、かなり確実に竜巻の推定風速を求めることが可能になると期待されている。ちなみに、EFスケールの最高階級であるEF5では、風速の上限が設定されていない。
従来の藤田スケールは、TORROスケール(TORRO scale)が用いられている一部の地域を除いては、2008年現在も、竜巻の規模を示す指標として、国際的に広く用いられている。
日本では気象庁が2007年(平成19年)4月1日より「藤田スケール」を予報用語に追加した[12]。また、気象庁は米国のEFスケールを参考にしながら日本の環境に合わせて藤田スケールを改良し、より正確に竜巻など突風の風速を推定することができる日本版改良藤田スケール(JEFスケール)を2015年(平成27年)12月に策定して、2016年(平成28年)4月より運用を開始した[13]。
脚注
- ^ 原著論文は藤田(1971年)を参照。
- ^ Grazulis, Thomas P (July 1993). Significant Tornadoes 1680–1991. St. Johnsbury, VT: The Tornado Project of Environmental Films. ISBN 1-879362-03-1
- ^ a b Tornado FAQ Storm Prediction Center
- ^ Storm Prediction Center Enhanced Fujita Scale(EF Scale)
- ^ “藤田(F)スケールとは”. 気象庁. 2025年6月12日閲覧。
- ^ Fujita, T. Theodore (1974年). “Jumbo Tornado Outbreak of 3 April 1974”. 2021年9月18日閲覧。
- ^ Center Stage: Oklahoma City — Hope after the storm
- ^ Snyder, Jeffrey C.; Bluestein, Howard B. (21 April 2014). “Some Considerations for the Use of High-Resolution Mobile Radar Data in Tornado Intensity Determination”. Weather and Forecasting 29 (4): 799–827. Bibcode: 2014WtFor..29..799S. doi:10.1175/WAF-D-14-00026.1 .
- ^ Wurman, Joshua; Kosiba, Karen; Robinson, Paul; Marshall, Tim (2014). “The Role of Multiple-Vortex Tornado Structure in Causing Storm Researcher Fatalities”. Bulletin of the American Meteorological Society 95 (1): 31–45. Bibcode: 2014BAMS...95...31W. doi:10.1175/BAMS-D-13-00221.1.
- ^ “Obama offers solace in tornado-ravaged Oklahoma”. AFP. (2013年5月27日) 2021年9月18日閲覧。
- ^ Sills et al. “IMPLEMENTATION AND APPLICATION OF THE EF-SCALE IN CANADA” (PDF). 2016年8月24日閲覧。
- ^ “平成19年報道発表資料 予報用語の改正について”. 気象庁 (2007年3月29日). 2016年8月23日閲覧。
- ^ “日本版改良藤田(JEF)スケールとは”. 気象庁. 2016年8月23日閲覧。
参考文献
- 藤田哲也、1971年「Proposed characterization of tornadoes and hurricanes by area and intensity」『SMRP Research Paper』(シカゴ大学)91巻、インターネットアーカイブ: nasa_techdoc_19720008829
関連項目
- 改良藤田スケール
- サファ・シンプソン・ハリケーン・スケール
- 竜巻災害の一覧
- F5 (プロレス技) - 藤田スケールのF5にちなんで命名された
外部リンク
- NOAAニュース
- 改良藤田スケール(EFスケール)(SPC)
- 藤田スケール改良計画 - テキサス工科大WISEセンター (2009年1月23日時点のアーカイブ)
藤田スケール
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/09/14 14:54 UTC 版)
「日本の発明・発見の一覧」の記事における「藤田スケール」の解説
竜巻の強さを測定するために設計された最初の尺度である藤田スケールは、1971年に藤田哲也(アレン・ピアソンとの共同研究)によって初めて紹介された。この尺度は、改良藤田スケールが開発されるまで世界中で広く採用された。
※この「藤田スケール」の解説は、「日本の発明・発見の一覧」の解説の一部です。
「藤田スケール」を含む「日本の発明・発見の一覧」の記事については、「日本の発明・発見の一覧」の概要を参照ください。
「藤田スケール」の例文・使い方・用例・文例
藤田スケールと同じ種類の言葉
- 藤田スケールのページへのリンク